
org.opensearch.search.aggregations.pipeline.EwmaModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of opensearch Show documentation
Show all versions of opensearch Show documentation
OpenSearch subproject :server
/*
* SPDX-License-Identifier: Apache-2.0
*
* The OpenSearch Contributors require contributions made to
* this file be licensed under the Apache-2.0 license or a
* compatible open source license.
*/
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Modifications Copyright OpenSearch Contributors. See
* GitHub history for details.
*/
package org.opensearch.search.aggregations.pipeline;
import org.opensearch.common.Nullable;
import org.opensearch.common.io.stream.StreamInput;
import org.opensearch.common.io.stream.StreamOutput;
import org.opensearch.common.xcontent.XContentBuilder;
import java.io.IOException;
import java.text.ParseException;
import java.util.Arrays;
import java.util.Collection;
import java.util.Map;
import java.util.Objects;
/**
* Calculate a exponentially weighted moving average
*/
public class EwmaModel extends MovAvgModel {
public static final String NAME = "ewma";
private static final double DEFAULT_ALPHA = 0.3;
/**
* Controls smoothing of data. Also known as "level" value.
* Alpha = 1 retains no memory of past values
* (e.g. random walk), while alpha = 0 retains infinite memory of past values (e.g.
* mean of the series).
*/
private final double alpha;
public EwmaModel() {
this(DEFAULT_ALPHA);
}
public EwmaModel(double alpha) {
this.alpha = alpha;
}
/**
* Read from a stream.
*/
public EwmaModel(StreamInput in) throws IOException {
alpha = in.readDouble();
}
@Override
public void writeTo(StreamOutput out) throws IOException {
out.writeDouble(alpha);
}
@Override
public String getWriteableName() {
return NAME;
}
@Override
public boolean canBeMinimized() {
return true;
}
@Override
public MovAvgModel neighboringModel() {
double alpha = Math.random();
return new EwmaModel(alpha);
}
@Override
public MovAvgModel clone() {
return new EwmaModel(this.alpha);
}
@Override
protected double[] doPredict(Collection values, int numPredictions) {
double[] predictions = new double[numPredictions];
// EWMA just emits the same final prediction repeatedly.
Arrays.fill(predictions, next(values));
return predictions;
}
@Override
public double next(Collection values) {
return MovingFunctions.ewma(values.stream().mapToDouble(Double::doubleValue).toArray(), alpha);
}
@Override
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
builder.field(MovAvgPipelineAggregationBuilder.MODEL.getPreferredName(), NAME);
builder.startObject(MovAvgPipelineAggregationBuilder.SETTINGS.getPreferredName());
builder.field("alpha", alpha);
builder.endObject();
return builder;
}
public static final AbstractModelParser PARSER = new AbstractModelParser() {
@Override
public MovAvgModel parse(@Nullable Map settings, String pipelineName, int windowSize) throws ParseException {
double alpha = parseDoubleParam(settings, "alpha", DEFAULT_ALPHA);
checkUnrecognizedParams(settings);
return new EwmaModel(alpha);
}
};
@Override
public int hashCode() {
return Objects.hash(alpha);
}
@Override
public boolean equals(Object obj) {
if (obj == null) {
return false;
}
if (getClass() != obj.getClass()) {
return false;
}
EwmaModel other = (EwmaModel) obj;
return Objects.equals(alpha, other.alpha);
}
public static class EWMAModelBuilder implements MovAvgModelBuilder {
private double alpha = DEFAULT_ALPHA;
/**
* Alpha controls the smoothing of the data. Alpha = 1 retains no memory of past values
* (e.g. a random walk), while alpha = 0 retains infinite memory of past values (e.g.
* the series mean). Useful values are somewhere in between. Defaults to 0.5.
*
* @param alpha A double between 0-1 inclusive, controls data smoothing
*
* @return The builder to continue chaining
*/
public EWMAModelBuilder alpha(double alpha) {
this.alpha = alpha;
return this;
}
@Override
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
builder.field(MovAvgPipelineAggregationBuilder.MODEL.getPreferredName(), NAME);
builder.startObject(MovAvgPipelineAggregationBuilder.SETTINGS.getPreferredName());
builder.field("alpha", alpha);
builder.endObject();
return builder;
}
@Override
public MovAvgModel build() {
return new EwmaModel(alpha);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy