![JAR search and dependency download from the Maven repository](/logo.png)
org.opensearch.search.aggregations.metrics.AvgAggregator Maven / Gradle / Ivy
/*
* SPDX-License-Identifier: Apache-2.0
*
* The OpenSearch Contributors require contributions made to
* this file be licensed under the Apache-2.0 license or a
* compatible open source license.
*/
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Modifications Copyright OpenSearch Contributors. See
* GitHub history for details.
*/
package org.opensearch.search.aggregations.metrics;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.search.ScoreMode;
import org.opensearch.common.lease.Releasables;
import org.opensearch.common.util.BigArrays;
import org.opensearch.common.util.DoubleArray;
import org.opensearch.common.util.LongArray;
import org.opensearch.index.fielddata.SortedNumericDoubleValues;
import org.opensearch.search.DocValueFormat;
import org.opensearch.search.aggregations.Aggregator;
import org.opensearch.search.aggregations.InternalAggregation;
import org.opensearch.search.aggregations.LeafBucketCollector;
import org.opensearch.search.aggregations.LeafBucketCollectorBase;
import org.opensearch.search.aggregations.support.ValuesSource;
import org.opensearch.search.aggregations.support.ValuesSourceConfig;
import org.opensearch.search.internal.SearchContext;
import java.io.IOException;
import java.util.Map;
class AvgAggregator extends NumericMetricsAggregator.SingleValue {
final ValuesSource.Numeric valuesSource;
LongArray counts;
DoubleArray sums;
DoubleArray compensations;
DocValueFormat format;
AvgAggregator(
String name,
ValuesSourceConfig valuesSourceConfig,
SearchContext context,
Aggregator parent,
Map metadata
) throws IOException {
super(name, context, parent, metadata);
// TODO Stop expecting nulls here
this.valuesSource = valuesSourceConfig.hasValues() ? (ValuesSource.Numeric) valuesSourceConfig.getValuesSource() : null;
this.format = valuesSourceConfig.format();
if (valuesSource != null) {
final BigArrays bigArrays = context.bigArrays();
counts = bigArrays.newLongArray(1, true);
sums = bigArrays.newDoubleArray(1, true);
compensations = bigArrays.newDoubleArray(1, true);
}
}
@Override
public ScoreMode scoreMode() {
return valuesSource != null && valuesSource.needsScores() ? ScoreMode.COMPLETE : ScoreMode.COMPLETE_NO_SCORES;
}
@Override
public LeafBucketCollector getLeafCollector(LeafReaderContext ctx, final LeafBucketCollector sub) throws IOException {
if (valuesSource == null) {
return LeafBucketCollector.NO_OP_COLLECTOR;
}
final BigArrays bigArrays = context.bigArrays();
final SortedNumericDoubleValues values = valuesSource.doubleValues(ctx);
final CompensatedSum kahanSummation = new CompensatedSum(0, 0);
return new LeafBucketCollectorBase(sub, values) {
@Override
public void collect(int doc, long bucket) throws IOException {
counts = bigArrays.grow(counts, bucket + 1);
sums = bigArrays.grow(sums, bucket + 1);
compensations = bigArrays.grow(compensations, bucket + 1);
if (values.advanceExact(doc)) {
final int valueCount = values.docValueCount();
counts.increment(bucket, valueCount);
// Compute the sum of double values with Kahan summation algorithm which is more
// accurate than naive summation.
double sum = sums.get(bucket);
double compensation = compensations.get(bucket);
kahanSummation.reset(sum, compensation);
for (int i = 0; i < valueCount; i++) {
double value = values.nextValue();
kahanSummation.add(value);
}
sums.set(bucket, kahanSummation.value());
compensations.set(bucket, kahanSummation.delta());
}
}
};
}
@Override
public double metric(long owningBucketOrd) {
if (valuesSource == null || owningBucketOrd >= sums.size()) {
return Double.NaN;
}
return sums.get(owningBucketOrd) / counts.get(owningBucketOrd);
}
@Override
public InternalAggregation buildAggregation(long bucket) {
if (valuesSource == null || bucket >= sums.size()) {
return buildEmptyAggregation();
}
return new InternalAvg(name, sums.get(bucket), counts.get(bucket), format, metadata());
}
@Override
public InternalAggregation buildEmptyAggregation() {
return new InternalAvg(name, 0.0, 0L, format, metadata());
}
@Override
public void doClose() {
Releasables.close(counts, sums, compensations);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy