All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.opensearch.search.aggregations.metrics.WeightedAvgAggregator Maven / Gradle / Ivy

There is a newer version: 2.18.0
Show newest version
/*
 * SPDX-License-Identifier: Apache-2.0
 *
 * The OpenSearch Contributors require contributions made to
 * this file be licensed under the Apache-2.0 license or a
 * compatible open source license.
 */

/*
 * Licensed to Elasticsearch under one or more contributor
 * license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright
 * ownership. Elasticsearch licenses this file to you under
 * the Apache License, Version 2.0 (the "License"); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
/*
 * Modifications Copyright OpenSearch Contributors. See
 * GitHub history for details.
 */

package org.opensearch.search.aggregations.metrics;

import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.search.ScoreMode;
import org.opensearch.common.lease.Releasables;
import org.opensearch.common.util.BigArrays;
import org.opensearch.common.util.DoubleArray;
import org.opensearch.index.fielddata.SortedNumericDoubleValues;
import org.opensearch.search.DocValueFormat;
import org.opensearch.search.aggregations.AggregationExecutionException;
import org.opensearch.search.aggregations.Aggregator;
import org.opensearch.search.aggregations.InternalAggregation;
import org.opensearch.search.aggregations.LeafBucketCollector;
import org.opensearch.search.aggregations.LeafBucketCollectorBase;
import org.opensearch.search.aggregations.support.MultiValuesSource;
import org.opensearch.search.internal.SearchContext;

import java.io.IOException;
import java.util.Map;

import static org.opensearch.search.aggregations.metrics.WeightedAvgAggregationBuilder.VALUE_FIELD;
import static org.opensearch.search.aggregations.metrics.WeightedAvgAggregationBuilder.WEIGHT_FIELD;

class WeightedAvgAggregator extends NumericMetricsAggregator.SingleValue {

    private final MultiValuesSource.NumericMultiValuesSource valuesSources;

    private DoubleArray weights;
    private DoubleArray valueSums;
    private DoubleArray valueCompensations;
    private DoubleArray weightCompensations;
    private DocValueFormat format;

    WeightedAvgAggregator(
        String name,
        MultiValuesSource.NumericMultiValuesSource valuesSources,
        DocValueFormat format,
        SearchContext context,
        Aggregator parent,
        Map metadata
    ) throws IOException {
        super(name, context, parent, metadata);
        this.valuesSources = valuesSources;
        this.format = format;
        if (valuesSources != null) {
            final BigArrays bigArrays = context.bigArrays();
            weights = bigArrays.newDoubleArray(1, true);
            valueSums = bigArrays.newDoubleArray(1, true);
            valueCompensations = bigArrays.newDoubleArray(1, true);
            weightCompensations = bigArrays.newDoubleArray(1, true);
        }
    }

    @Override
    public ScoreMode scoreMode() {
        return valuesSources != null && valuesSources.needsScores() ? ScoreMode.COMPLETE : ScoreMode.COMPLETE_NO_SCORES;
    }

    @Override
    public LeafBucketCollector getLeafCollector(LeafReaderContext ctx, final LeafBucketCollector sub) throws IOException {
        if (valuesSources == null) {
            return LeafBucketCollector.NO_OP_COLLECTOR;
        }
        final BigArrays bigArrays = context.bigArrays();
        final SortedNumericDoubleValues docValues = valuesSources.getField(VALUE_FIELD.getPreferredName(), ctx);
        final SortedNumericDoubleValues docWeights = valuesSources.getField(WEIGHT_FIELD.getPreferredName(), ctx);
        final CompensatedSum compensatedValueSum = new CompensatedSum(0, 0);
        final CompensatedSum compensatedWeightSum = new CompensatedSum(0, 0);

        return new LeafBucketCollectorBase(sub, docValues) {
            @Override
            public void collect(int doc, long bucket) throws IOException {
                weights = bigArrays.grow(weights, bucket + 1);
                valueSums = bigArrays.grow(valueSums, bucket + 1);
                valueCompensations = bigArrays.grow(valueCompensations, bucket + 1);
                weightCompensations = bigArrays.grow(weightCompensations, bucket + 1);

                if (docValues.advanceExact(doc) && docWeights.advanceExact(doc)) {
                    if (docWeights.docValueCount() > 1) {
                        throw new AggregationExecutionException(
                            "Encountered more than one weight for a "
                                + "single document. Use a script to combine multiple weights-per-doc into a single value."
                        );
                    }
                    // There should always be one weight if advanceExact lands us here, either
                    // a real weight or a `missing` weight
                    assert docWeights.docValueCount() == 1;
                    final double weight = docWeights.nextValue();

                    final int numValues = docValues.docValueCount();
                    assert numValues > 0;

                    double valueSum = valueSums.get(bucket);
                    double valueCompensation = valueCompensations.get(bucket);
                    compensatedValueSum.reset(valueSum, valueCompensation);

                    double weightSum = weights.get(bucket);
                    double weightCompensation = weightCompensations.get(bucket);
                    compensatedWeightSum.reset(weightSum, weightCompensation);

                    for (int i = 0; i < numValues; i++) {
                        compensatedValueSum.add(docValues.nextValue() * weight);
                        compensatedWeightSum.add(weight);
                    }

                    valueSums.set(bucket, compensatedValueSum.value());
                    valueCompensations.set(bucket, compensatedValueSum.delta());
                    weights.set(bucket, compensatedWeightSum.value());
                    weightCompensations.set(bucket, compensatedWeightSum.delta());
                }
            }
        };
    }

    @Override
    public double metric(long owningBucketOrd) {
        if (valuesSources == null || owningBucketOrd >= valueSums.size()) {
            return Double.NaN;
        }
        return valueSums.get(owningBucketOrd) / weights.get(owningBucketOrd);
    }

    @Override
    public InternalAggregation buildAggregation(long bucket) {
        if (valuesSources == null || bucket >= valueSums.size()) {
            return buildEmptyAggregation();
        }
        return new InternalWeightedAvg(name, valueSums.get(bucket), weights.get(bucket), format, metadata());
    }

    @Override
    public InternalAggregation buildEmptyAggregation() {
        return new InternalWeightedAvg(name, 0.0, 0L, format, metadata());
    }

    @Override
    public void doClose() {
        Releasables.close(weights, valueSums, valueCompensations, weightCompensations);
    }

}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy