![JAR search and dependency download from the Maven repository](/logo.png)
org.opensearch.search.aggregations.metrics.WeightedAvgAggregator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of opensearch Show documentation
Show all versions of opensearch Show documentation
OpenSearch subproject :server
/*
* SPDX-License-Identifier: Apache-2.0
*
* The OpenSearch Contributors require contributions made to
* this file be licensed under the Apache-2.0 license or a
* compatible open source license.
*/
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Modifications Copyright OpenSearch Contributors. See
* GitHub history for details.
*/
package org.opensearch.search.aggregations.metrics;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.search.ScoreMode;
import org.opensearch.common.lease.Releasables;
import org.opensearch.common.util.BigArrays;
import org.opensearch.common.util.DoubleArray;
import org.opensearch.index.fielddata.SortedNumericDoubleValues;
import org.opensearch.search.DocValueFormat;
import org.opensearch.search.aggregations.AggregationExecutionException;
import org.opensearch.search.aggregations.Aggregator;
import org.opensearch.search.aggregations.InternalAggregation;
import org.opensearch.search.aggregations.LeafBucketCollector;
import org.opensearch.search.aggregations.LeafBucketCollectorBase;
import org.opensearch.search.aggregations.support.MultiValuesSource;
import org.opensearch.search.internal.SearchContext;
import java.io.IOException;
import java.util.Map;
import static org.opensearch.search.aggregations.metrics.WeightedAvgAggregationBuilder.VALUE_FIELD;
import static org.opensearch.search.aggregations.metrics.WeightedAvgAggregationBuilder.WEIGHT_FIELD;
class WeightedAvgAggregator extends NumericMetricsAggregator.SingleValue {
private final MultiValuesSource.NumericMultiValuesSource valuesSources;
private DoubleArray weights;
private DoubleArray valueSums;
private DoubleArray valueCompensations;
private DoubleArray weightCompensations;
private DocValueFormat format;
WeightedAvgAggregator(
String name,
MultiValuesSource.NumericMultiValuesSource valuesSources,
DocValueFormat format,
SearchContext context,
Aggregator parent,
Map metadata
) throws IOException {
super(name, context, parent, metadata);
this.valuesSources = valuesSources;
this.format = format;
if (valuesSources != null) {
final BigArrays bigArrays = context.bigArrays();
weights = bigArrays.newDoubleArray(1, true);
valueSums = bigArrays.newDoubleArray(1, true);
valueCompensations = bigArrays.newDoubleArray(1, true);
weightCompensations = bigArrays.newDoubleArray(1, true);
}
}
@Override
public ScoreMode scoreMode() {
return valuesSources != null && valuesSources.needsScores() ? ScoreMode.COMPLETE : ScoreMode.COMPLETE_NO_SCORES;
}
@Override
public LeafBucketCollector getLeafCollector(LeafReaderContext ctx, final LeafBucketCollector sub) throws IOException {
if (valuesSources == null) {
return LeafBucketCollector.NO_OP_COLLECTOR;
}
final BigArrays bigArrays = context.bigArrays();
final SortedNumericDoubleValues docValues = valuesSources.getField(VALUE_FIELD.getPreferredName(), ctx);
final SortedNumericDoubleValues docWeights = valuesSources.getField(WEIGHT_FIELD.getPreferredName(), ctx);
final CompensatedSum compensatedValueSum = new CompensatedSum(0, 0);
final CompensatedSum compensatedWeightSum = new CompensatedSum(0, 0);
return new LeafBucketCollectorBase(sub, docValues) {
@Override
public void collect(int doc, long bucket) throws IOException {
weights = bigArrays.grow(weights, bucket + 1);
valueSums = bigArrays.grow(valueSums, bucket + 1);
valueCompensations = bigArrays.grow(valueCompensations, bucket + 1);
weightCompensations = bigArrays.grow(weightCompensations, bucket + 1);
if (docValues.advanceExact(doc) && docWeights.advanceExact(doc)) {
if (docWeights.docValueCount() > 1) {
throw new AggregationExecutionException(
"Encountered more than one weight for a "
+ "single document. Use a script to combine multiple weights-per-doc into a single value."
);
}
// There should always be one weight if advanceExact lands us here, either
// a real weight or a `missing` weight
assert docWeights.docValueCount() == 1;
final double weight = docWeights.nextValue();
final int numValues = docValues.docValueCount();
assert numValues > 0;
double valueSum = valueSums.get(bucket);
double valueCompensation = valueCompensations.get(bucket);
compensatedValueSum.reset(valueSum, valueCompensation);
double weightSum = weights.get(bucket);
double weightCompensation = weightCompensations.get(bucket);
compensatedWeightSum.reset(weightSum, weightCompensation);
for (int i = 0; i < numValues; i++) {
compensatedValueSum.add(docValues.nextValue() * weight);
compensatedWeightSum.add(weight);
}
valueSums.set(bucket, compensatedValueSum.value());
valueCompensations.set(bucket, compensatedValueSum.delta());
weights.set(bucket, compensatedWeightSum.value());
weightCompensations.set(bucket, compensatedWeightSum.delta());
}
}
};
}
@Override
public double metric(long owningBucketOrd) {
if (valuesSources == null || owningBucketOrd >= valueSums.size()) {
return Double.NaN;
}
return valueSums.get(owningBucketOrd) / weights.get(owningBucketOrd);
}
@Override
public InternalAggregation buildAggregation(long bucket) {
if (valuesSources == null || bucket >= valueSums.size()) {
return buildEmptyAggregation();
}
return new InternalWeightedAvg(name, valueSums.get(bucket), weights.get(bucket), format, metadata());
}
@Override
public InternalAggregation buildEmptyAggregation() {
return new InternalWeightedAvg(name, 0.0, 0L, format, metadata());
}
@Override
public void doClose() {
Releasables.close(weights, valueSums, valueCompensations, weightCompensations);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy