org.opensearch.common.time.DateUtilsRounding Maven / Gradle / Ivy
Show all versions of opensearch Show documentation
/*
* SPDX-License-Identifier: Apache-2.0
*
* The OpenSearch Contributors require contributions made to
* this file be licensed under the Apache-2.0 license or a
* compatible open source license.
*/
/* @notice
* Copyright 2001-2014 Stephen Colebourne
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Modifications Copyright OpenSearch Contributors. See
* GitHub history for details.
*/
package org.opensearch.common.time;
/**
* This class has been copied from different locations within the joda time package, as
* these methods fast when used for rounding, as they do not require conversion to java
* time objects
*
* This code has been copied from jodatime 2.10.1
* The source can be found at https://github.com/JodaOrg/joda-time/tree/v2.10.1
*
* See following methods have been copied (along with required helper variables)
*
* - org.joda.time.chrono.GregorianChronology.calculateFirstDayOfYearMillis(int year)
* - org.joda.time.chrono.BasicChronology.getYear(int year)
* - org.joda.time.chrono.BasicGJChronology.getMonthOfYear(long utcMillis, int year)
* - org.joda.time.chrono.BasicGJChronology.getTotalMillisByYearMonth(int year, int month)
*
* @opensearch.internal
*/
class DateUtilsRounding {
private static final int DAYS_0000_TO_1970 = 719527;
private static final int MILLIS_PER_DAY = 86_400_000;
private static final long MILLIS_PER_YEAR = 31556952000L;
// see org.joda.time.chrono.BasicGJChronology
private static final long[] MIN_TOTAL_MILLIS_BY_MONTH_ARRAY;
private static final long[] MAX_TOTAL_MILLIS_BY_MONTH_ARRAY;
private static final int[] MIN_DAYS_PER_MONTH_ARRAY = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
private static final int[] MAX_DAYS_PER_MONTH_ARRAY = { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
static {
MIN_TOTAL_MILLIS_BY_MONTH_ARRAY = new long[12];
MAX_TOTAL_MILLIS_BY_MONTH_ARRAY = new long[12];
long minSum = 0;
long maxSum = 0;
for (int i = 0; i < 11; i++) {
long millis = MIN_DAYS_PER_MONTH_ARRAY[i] * (long) MILLIS_PER_DAY;
minSum += millis;
MIN_TOTAL_MILLIS_BY_MONTH_ARRAY[i + 1] = minSum;
millis = MAX_DAYS_PER_MONTH_ARRAY[i] * (long) MILLIS_PER_DAY;
maxSum += millis;
MAX_TOTAL_MILLIS_BY_MONTH_ARRAY[i + 1] = maxSum;
}
}
/**
* calculates the first day of a year in milliseconds since the epoch (assuming UTC)
*
* @param year the year
* @return the milliseconds since the epoch of the first of january at midnight of the specified year
*/
// see org.joda.time.chrono.GregorianChronology.calculateFirstDayOfYearMillis
static long utcMillisAtStartOfYear(final int year) {
// Initial value is just temporary.
int leapYears = year / 100;
if (year < 0) {
// Add 3 before shifting right since /4 and >>2 behave differently
// on negative numbers. When the expression is written as
// (year / 4) - (year / 100) + (year / 400),
// it works for both positive and negative values, except this optimization
// eliminates two divisions.
leapYears = ((year + 3) >> 2) - leapYears + ((leapYears + 3) >> 2) - 1;
} else {
leapYears = (year >> 2) - leapYears + (leapYears >> 2);
if (isLeapYear(year)) {
leapYears--;
}
}
return (year * 365L + (leapYears - DAYS_0000_TO_1970)) * MILLIS_PER_DAY; // millis per day
}
static boolean isLeapYear(final int year) {
// Joda had
// return ((year & 3) == 0) && ((year % 100) != 0 || (year % 400) == 0);
// But we've replaced that with this:
if ((year & 3) != 0) {
return false;
}
if (year % 100 != 0) {
return true;
}
return ((year / 100) & 3) == 0;
/*
* It is a little faster because it saves a division. We don't have good
* measurements for this method on its own, but this change speeds up
* rounding the nearest month by about 8%.
*
* Note: If you decompile this method to x86 assembly you won't see the
* division you'd expect from % 100 and / 100. Instead you'll see a funny
* sequence of bit twiddling operations which the jvm thinks is faster.
* Division is slow so it almost certainly is.
*/
}
private static final long AVERAGE_MILLIS_PER_YEAR_DIVIDED_BY_TWO = MILLIS_PER_YEAR / 2;
private static final long APPROX_MILLIS_AT_EPOCH_DIVIDED_BY_TWO = (1970L * MILLIS_PER_YEAR) / 2;
// see org.joda.time.chrono.BasicChronology
static int getYear(final long utcMillis) {
// Get an initial estimate of the year, and the millis value that
// represents the start of that year. Then verify estimate and fix if
// necessary.
// Initial estimate uses values divided by two to avoid overflow.
long unitMillis = AVERAGE_MILLIS_PER_YEAR_DIVIDED_BY_TWO;
long i2 = (utcMillis >> 1) + APPROX_MILLIS_AT_EPOCH_DIVIDED_BY_TWO;
if (i2 < 0) {
i2 = i2 - unitMillis + 1;
}
int year = (int) (i2 / unitMillis);
long yearStart = utcMillisAtStartOfYear(year);
long diff = utcMillis - yearStart;
if (diff < 0) {
year--;
} else if (diff >= MILLIS_PER_DAY * 365L) {
// One year may need to be added to fix estimate.
long oneYear;
if (isLeapYear(year)) {
oneYear = MILLIS_PER_DAY * 366L;
} else {
oneYear = MILLIS_PER_DAY * 365L;
}
yearStart += oneYear;
if (yearStart <= utcMillis) {
// Didn't go too far, so actually add one year.
year++;
}
}
return year;
}
// see org.joda.time.chrono.BasicGJChronology
static int getMonthOfYear(final long utcMillis, final int year) {
// Perform a binary search to get the month. To make it go even faster,
// compare using ints instead of longs. The number of milliseconds per
// year exceeds the limit of a 32-bit int's capacity, so divide by
// 1024. No precision is lost (except time of day) since the number of
// milliseconds per day contains 1024 as a factor. After the division,
// the instant isn't measured in milliseconds, but in units of
// (128/125)seconds.
int i = (int) ((utcMillis - utcMillisAtStartOfYear(year)) >> 10);
// There are 86400000 milliseconds per day, but divided by 1024 is
// 84375. There are 84375 (128/125)seconds per day.
return (isLeapYear(year))
? ((i < 182 * 84375)
? ((i < 91 * 84375)
? ((i < 31 * 84375) ? 1 : (i < 60 * 84375) ? 2 : 3)
: ((i < 121 * 84375) ? 4 : (i < 152 * 84375) ? 5 : 6))
: ((i < 274 * 84375)
? ((i < 213 * 84375) ? 7 : (i < 244 * 84375) ? 8 : 9)
: ((i < 305 * 84375) ? 10 : (i < 335 * 84375) ? 11 : 12)))
: ((i < 181 * 84375)
? ((i < 90 * 84375)
? ((i < 31 * 84375) ? 1 : (i < 59 * 84375) ? 2 : 3)
: ((i < 120 * 84375) ? 4 : (i < 151 * 84375) ? 5 : 6))
: ((i < 273 * 84375)
? ((i < 212 * 84375) ? 7 : (i < 243 * 84375) ? 8 : 9)
: ((i < 304 * 84375) ? 10 : (i < 334 * 84375) ? 11 : 12)));
}
// see org.joda.time.chrono.BasicGJChronology
static long getTotalMillisByYearMonth(final int year, final int month) {
if (isLeapYear(year)) {
return MAX_TOTAL_MILLIS_BY_MONTH_ARRAY[month - 1];
} else {
return MIN_TOTAL_MILLIS_BY_MONTH_ARRAY[month - 1];
}
}
}