All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.opensearch.common.time.DateUtilsRounding Maven / Gradle / Ivy

There is a newer version: 2.18.0
Show newest version
/*
 * SPDX-License-Identifier: Apache-2.0
 *
 * The OpenSearch Contributors require contributions made to
 * this file be licensed under the Apache-2.0 license or a
 * compatible open source license.
 */

/* @notice
 *  Copyright 2001-2014 Stephen Colebourne
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */
/*
 * Modifications Copyright OpenSearch Contributors. See
 * GitHub history for details.
 */

package org.opensearch.common.time;

/**
 * This class has been copied from different locations within the joda time package, as
 * these methods fast when used for rounding, as they do not require conversion to java
 * time objects
 * 

* This code has been copied from jodatime 2.10.1 * The source can be found at https://github.com/JodaOrg/joda-time/tree/v2.10.1 *

* See following methods have been copied (along with required helper variables) *

* - org.joda.time.chrono.GregorianChronology.calculateFirstDayOfYearMillis(int year) * - org.joda.time.chrono.BasicChronology.getYear(int year) * - org.joda.time.chrono.BasicGJChronology.getMonthOfYear(long utcMillis, int year) * - org.joda.time.chrono.BasicGJChronology.getTotalMillisByYearMonth(int year, int month) * * @opensearch.internal */ class DateUtilsRounding { private static final int DAYS_0000_TO_1970 = 719527; private static final int MILLIS_PER_DAY = 86_400_000; private static final long MILLIS_PER_YEAR = 31556952000L; // see org.joda.time.chrono.BasicGJChronology private static final long[] MIN_TOTAL_MILLIS_BY_MONTH_ARRAY; private static final long[] MAX_TOTAL_MILLIS_BY_MONTH_ARRAY; private static final int[] MIN_DAYS_PER_MONTH_ARRAY = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; private static final int[] MAX_DAYS_PER_MONTH_ARRAY = { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; static { MIN_TOTAL_MILLIS_BY_MONTH_ARRAY = new long[12]; MAX_TOTAL_MILLIS_BY_MONTH_ARRAY = new long[12]; long minSum = 0; long maxSum = 0; for (int i = 0; i < 11; i++) { long millis = MIN_DAYS_PER_MONTH_ARRAY[i] * (long) MILLIS_PER_DAY; minSum += millis; MIN_TOTAL_MILLIS_BY_MONTH_ARRAY[i + 1] = minSum; millis = MAX_DAYS_PER_MONTH_ARRAY[i] * (long) MILLIS_PER_DAY; maxSum += millis; MAX_TOTAL_MILLIS_BY_MONTH_ARRAY[i + 1] = maxSum; } } /** * calculates the first day of a year in milliseconds since the epoch (assuming UTC) * * @param year the year * @return the milliseconds since the epoch of the first of january at midnight of the specified year */ // see org.joda.time.chrono.GregorianChronology.calculateFirstDayOfYearMillis static long utcMillisAtStartOfYear(final int year) { // Initial value is just temporary. int leapYears = year / 100; if (year < 0) { // Add 3 before shifting right since /4 and >>2 behave differently // on negative numbers. When the expression is written as // (year / 4) - (year / 100) + (year / 400), // it works for both positive and negative values, except this optimization // eliminates two divisions. leapYears = ((year + 3) >> 2) - leapYears + ((leapYears + 3) >> 2) - 1; } else { leapYears = (year >> 2) - leapYears + (leapYears >> 2); if (isLeapYear(year)) { leapYears--; } } return (year * 365L + (leapYears - DAYS_0000_TO_1970)) * MILLIS_PER_DAY; // millis per day } static boolean isLeapYear(final int year) { // Joda had // return ((year & 3) == 0) && ((year % 100) != 0 || (year % 400) == 0); // But we've replaced that with this: if ((year & 3) != 0) { return false; } if (year % 100 != 0) { return true; } return ((year / 100) & 3) == 0; /* * It is a little faster because it saves a division. We don't have good * measurements for this method on its own, but this change speeds up * rounding the nearest month by about 8%. * * Note: If you decompile this method to x86 assembly you won't see the * division you'd expect from % 100 and / 100. Instead you'll see a funny * sequence of bit twiddling operations which the jvm thinks is faster. * Division is slow so it almost certainly is. */ } private static final long AVERAGE_MILLIS_PER_YEAR_DIVIDED_BY_TWO = MILLIS_PER_YEAR / 2; private static final long APPROX_MILLIS_AT_EPOCH_DIVIDED_BY_TWO = (1970L * MILLIS_PER_YEAR) / 2; // see org.joda.time.chrono.BasicChronology static int getYear(final long utcMillis) { // Get an initial estimate of the year, and the millis value that // represents the start of that year. Then verify estimate and fix if // necessary. // Initial estimate uses values divided by two to avoid overflow. long unitMillis = AVERAGE_MILLIS_PER_YEAR_DIVIDED_BY_TWO; long i2 = (utcMillis >> 1) + APPROX_MILLIS_AT_EPOCH_DIVIDED_BY_TWO; if (i2 < 0) { i2 = i2 - unitMillis + 1; } int year = (int) (i2 / unitMillis); long yearStart = utcMillisAtStartOfYear(year); long diff = utcMillis - yearStart; if (diff < 0) { year--; } else if (diff >= MILLIS_PER_DAY * 365L) { // One year may need to be added to fix estimate. long oneYear; if (isLeapYear(year)) { oneYear = MILLIS_PER_DAY * 366L; } else { oneYear = MILLIS_PER_DAY * 365L; } yearStart += oneYear; if (yearStart <= utcMillis) { // Didn't go too far, so actually add one year. year++; } } return year; } // see org.joda.time.chrono.BasicGJChronology static int getMonthOfYear(final long utcMillis, final int year) { // Perform a binary search to get the month. To make it go even faster, // compare using ints instead of longs. The number of milliseconds per // year exceeds the limit of a 32-bit int's capacity, so divide by // 1024. No precision is lost (except time of day) since the number of // milliseconds per day contains 1024 as a factor. After the division, // the instant isn't measured in milliseconds, but in units of // (128/125)seconds. int i = (int) ((utcMillis - utcMillisAtStartOfYear(year)) >> 10); // There are 86400000 milliseconds per day, but divided by 1024 is // 84375. There are 84375 (128/125)seconds per day. return (isLeapYear(year)) ? ((i < 182 * 84375) ? ((i < 91 * 84375) ? ((i < 31 * 84375) ? 1 : (i < 60 * 84375) ? 2 : 3) : ((i < 121 * 84375) ? 4 : (i < 152 * 84375) ? 5 : 6)) : ((i < 274 * 84375) ? ((i < 213 * 84375) ? 7 : (i < 244 * 84375) ? 8 : 9) : ((i < 305 * 84375) ? 10 : (i < 335 * 84375) ? 11 : 12))) : ((i < 181 * 84375) ? ((i < 90 * 84375) ? ((i < 31 * 84375) ? 1 : (i < 59 * 84375) ? 2 : 3) : ((i < 120 * 84375) ? 4 : (i < 151 * 84375) ? 5 : 6)) : ((i < 273 * 84375) ? ((i < 212 * 84375) ? 7 : (i < 243 * 84375) ? 8 : 9) : ((i < 304 * 84375) ? 10 : (i < 334 * 84375) ? 11 : 12))); } // see org.joda.time.chrono.BasicGJChronology static long getTotalMillisByYearMonth(final int year, final int month) { if (isLeapYear(year)) { return MAX_TOTAL_MILLIS_BY_MONTH_ARRAY[month - 1]; } else { return MIN_TOTAL_MILLIS_BY_MONTH_ARRAY[month - 1]; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy