Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
package org.opentripplanner.routing.spt;
import org.locationtech.jts.geom.Coordinate;
import org.locationtech.jts.geom.LineString;
import org.opentripplanner.common.geometry.SphericalDistanceLibrary;
import org.opentripplanner.routing.core.State;
import org.opentripplanner.routing.core.TraverseMode;
import org.opentripplanner.routing.edgetype.StreetEdge;
import org.opentripplanner.routing.graph.Edge;
import org.opentripplanner.routing.graph.Vertex;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.Collection;
import java.util.HashSet;
import java.util.Set;
/**
* Walk over a SPT tree to geometrically visit all nodes and edge geometry. For each geometry longer
* than the provided base length d0, split it in several steps of equal length and shorter than d0.
* For each walk step call the visitor callback.
*
* @author laurent
*/
public class SPTWalker {
private static final Logger LOG = LoggerFactory.getLogger(SPTWalker.class);
public static interface SPTVisitor {
/**
* @param e The edge to filter.
* @return True to visit this edge, false to skip it.
*/
public boolean accept(Edge e);
/**
* Note: The same state can be visited several times (from different edges).
*
* @param e The edge being visited (filtered from a previous call to accept)
* @param c The coordinate of the point alongside the edge geometry.
* @param s0 The state at the begin vertex of this edge
* @param s1 The state at the end vertex of this edge
* @param d0 Curvilinear coordinate of c on [s0-s1], in meters
* @param d1 Curvilinear coordinate of c on [s1-s0], in meters
* @param speed The assumed speed on the edge
*/
public void visit(Edge e, Coordinate c, State s0, State s1, double d0, double d1, double speed);
}
private ShortestPathTree spt;
public SPTWalker(ShortestPathTree spt) {
this.spt = spt;
}
/**
* Walk over a SPT. Call a visitor for each visited point.
*/
public void walk(SPTVisitor visitor, double d0) {
int nTotal = 0, nSkippedDupEdge = 0, nSkippedNoGeometry = 0;
Collection extends State> allStates = spt.getAllStates();
Set allVertices = new HashSet(spt.getVertexCount());
for (State s : allStates) {
allVertices.add(s.getVertex());
}
Set processedEdges = new HashSet(allVertices.size());
for (Vertex v : allVertices) {
State s0 = spt.getState(v);
if (s0 == null || !s0.isFinal())
continue;
for (Edge e : s0.getVertex().getIncoming()) {
// Take only street
if (e != null && visitor.accept(e)) {
State s1 = spt.getState(e.getFromVertex());
if (s1 == null || !s1.isFinal())
continue;
if (e.getFromVertex() != null && e.getToVertex() != null) {
// Hack alert: e.hashCode() throw NPE
if (processedEdges.contains(e)) {
nSkippedDupEdge++;
continue;
}
processedEdges.add(e);
}
Vertex vx0 = s0.getVertex();
Vertex vx1 = s1.getVertex();
LineString lineString = e.getGeometry();
if (lineString == null) {
nSkippedNoGeometry++;
continue;
}
// Compute speed along edge
double speedAlongEdge = spt.getOptions().walkSpeed;
if (e instanceof StreetEdge) {
StreetEdge se = (StreetEdge) e;
/*
* Compute effective speed, taking into account end state mode (car, bike,
* walk...) and edge properties (car max speed, slope, etc...)
*/
TraverseMode mode = s0.getNonTransitMode();
speedAlongEdge = se.calculateSpeed(spt.getOptions(), mode, false);
if (mode != TraverseMode.CAR)
speedAlongEdge = speedAlongEdge * se.getDistanceMeters() / se.getEffectiveBikeDistance();
double avgSpeed = se.getDistanceMeters()
/ Math.abs(s0.getTimeInMillis() - s1.getTimeInMillis()) * 1000;
if (avgSpeed < 1e-10)
avgSpeed = 1e-10;
/*
* We can't go faster than the average speed on the edge. We can go slower
* however, that simply means that one end vertice has a time higher than
* the other end vertice + time to traverse the edge (can happen due to
* max walk clamping).
*/
if (speedAlongEdge > avgSpeed)
speedAlongEdge = avgSpeed;
}
// Length of linestring
double lineStringLen = SphericalDistanceLibrary.fastLength(lineString);
visitor.visit(e, vx0.getCoordinate(), s0, s1, 0.0, lineStringLen, speedAlongEdge);
visitor.visit(e, vx1.getCoordinate(), s0, s1, lineStringLen, 0.0, speedAlongEdge);
nTotal += 2;
Coordinate[] pList = lineString.getCoordinates();
boolean reverse = vx1.getCoordinate().equals(pList[0]);
// Split the linestring in nSteps
if (lineStringLen > d0) {
int nSteps = (int) Math.floor(lineStringLen / d0) + 1; // Number of steps
double stepLen = lineStringLen / nSteps; // Length of step
double startLen = 0; // Distance at start of current seg
double curLen = stepLen; // Distance cursor
int ns = 1;
for (int i = 0; i < pList.length - 1; i++) {
Coordinate p0 = pList[i];
Coordinate p1 = pList[i + 1];
double segLen = SphericalDistanceLibrary.fastDistance(p0, p1);
while (curLen - startLen < segLen) {
double k = (curLen - startLen) / segLen;
Coordinate p = new Coordinate(p0.x * (1 - k) + p1.x * k, p0.y
* (1 - k) + p1.y * k);
visitor.visit(e, p, reverse ? s1 : s0, reverse ? s0 : s1, curLen,
lineStringLen - curLen, speedAlongEdge);
nTotal++;
curLen += stepLen;
ns++;
}
startLen += segLen;
if (ns >= nSteps)
break;
}
}
}
}
}
LOG.info("SPTWalker: Generated {} points ({} dup edges, {} no geometry) from {} vertices / {} states.",
nTotal, nSkippedDupEdge, nSkippedNoGeometry, allVertices.size(), allStates.size());
}
}