All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.cts.op.projection.EquidistantCylindrical Maven / Gradle / Ivy

Go to download

Coordinate Transformation Suite (abridged CTS) is a library developed to perform coordinate transformations using well known geodetic algorithms and parameter sets. It strives to be simple, flexible and interoperable, in this order.

There is a newer version: 1.7.1
Show newest version
/*
 * Coordinate Transformations Suite (abridged CTS)  is a library developped to 
 * perform Coordinate Transformations using well known geodetic algorithms 
 * and parameter sets. 
 * Its main focus are simplicity, flexibility, interoperability, in this order.
 *
 * This library has been originally developed by Michaël Michaud under the JGeod
 * name. It has been renamed CTS in 2009 and shared to the community from 
 * the OrbisGIS code repository.
 *
 * CTS is free software: you can redistribute it and/or modify it under the
 * terms of the GNU Lesser General Public License as published by the Free Software
 * Foundation, either version 3 of the License.
 *
 * CTS is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
 * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License along with
 * CTS. If not, see .
 *
 * For more information, please consult: 
 */
package org.cts.op.projection;

import java.util.Map;

import org.cts.CoordinateDimensionException;
import org.cts.Identifier;
import org.cts.datum.Ellipsoid;
import org.cts.op.NonInvertibleOperationException;
import org.cts.units.Measure;

import static java.lang.Math.abs;
import static java.lang.Math.cos;
import static java.lang.Math.PI;
import static java.lang.Math.pow;
import static java.lang.Math.sin;
import static java.lang.Math.sqrt;

/**
 * The Equidistant Cylindrical projection (EQC). 

* * @author Jules Party */ public class EquidistantCylindrical extends Projection { /** * The Identifier used for all Equidistant Cylindrical projections. */ public static final Identifier EQC = new Identifier("EPSG", "1028", "Equidistant Cylindrical", "EQC"); protected final double lat0, // the reference latitude lon0, // the reference longitude (from the datum prime meridian) FE, // false easting FN, // false northing C; // constant of the projection /** * Create a new Equidistant Cylindrical Projection corresponding to the * Ellipsoid and the list of parameters given in argument and * initialize common parameters lon0, lat0, FE, FN and C a constant useful * for the projection. * * @param ellipsoid ellipsoid used to define the projection. * @param parameters a map of useful parameters to define the projection. */ public EquidistantCylindrical(final Ellipsoid ellipsoid, final Map parameters) { super(EQC, ellipsoid, parameters); lon0 = getCentralMeridian(); lat0 = getLatitudeOfOrigin(); FE = getFalseEasting(); FN = getFalseNorthing(); double lat_ts = getLatitudeOfTrueScale(); double e2 = ellipsoid.getSquareEccentricity(); double k0 = cos(lat_ts) / sqrt(1 - e2 * pow(sin(lat_ts), 2)); C = getSemiMajorAxis() * k0; } /** * Return the * Surface type of this * Projection. */ @Override public Surface getSurface() { return Projection.Surface.CYLINDRICAL; } /** * Return the * Property of this * Projection. */ @Override public Property getProperty() { return Projection.Property.APHYLACTIC; } /** * Return the * Orientation of this * Projection. */ @Override public Orientation getOrientation() { return Projection.Orientation.TANGENT; } /** * Transform coord using the Equidistant Cylindrical Projection. Input coord * is supposed to be a geographic latitude / longitude coordinate in * radians. Algorithm based on the OGP's Guidance Note Number 7 Part 2 : * * * @param coord coordinate to transform * @throws CoordinateDimensionException if coord length is not * compatible with this CoordinateOperation. */ @Override public double[] transform(double[] coord) { double lon = coord[1]; double lat = abs(coord[0]) > PI * 85 / 180 ? PI * 85 / 180 : coord[0]; double E = C * (lon - lon0); double N = ellipsoid.arcFromLat(lat); coord[0] = FE + E; coord[1] = FN + N; return coord; } /** * Creates the inverse operation for Equidistant Cylindrical Projection. * Input coord is supposed to be a projected easting / northing coordinate * in meters. Algorithm based on the OGP's Guidance Note Number 7 Part 2 : * */ @Override public Projection inverse() { return new EquidistantCylindrical(ellipsoid, parameters) { @Override public double[] transform(double[] coord) { double lat = ellipsoid.latFromArc(coord[1] - FN); coord[1] = (coord[0] - FE) / C + lon0; coord[0] = lat; return coord; } @Override public Projection inverse() { return EquidistantCylindrical.this; } @Override public boolean isDirect() { return false; } @Override public String toString() { return EquidistantCylindrical.this.toString() + " inverse"; } }; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy