All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.orekit.attitudes.GroundPointing Maven / Gradle / Ivy

Go to download

OREKIT (ORbits Extrapolation KIT) is a low level space dynamics library. It provides basic elements (orbits, dates, attitude, frames ...) and various algorithms to handle them (conversions, analytical and numerical propagation, pointing ...).

There is a newer version: 12.2
Show newest version
/* Copyright 2002-2020 CS Group
 * Licensed to CS Group (CS) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * CS licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.orekit.attitudes;

import org.hipparchus.RealFieldElement;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.util.FastMath;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitMessages;
import org.orekit.frames.Frame;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.utils.AngularCoordinates;
import org.orekit.utils.FieldAngularCoordinates;
import org.orekit.utils.FieldPVCoordinates;
import org.orekit.utils.FieldPVCoordinatesProvider;
import org.orekit.utils.PVCoordinates;
import org.orekit.utils.PVCoordinatesProvider;
import org.orekit.utils.TimeStampedFieldPVCoordinates;
import org.orekit.utils.TimeStampedPVCoordinates;


/**
 * Base class for ground pointing attitude providers.
 *
 * 

This class is a basic model for different kind of ground pointing * attitude providers, such as : body center pointing, nadir pointing, * target pointing, etc... *

*

* The object GroundPointing is guaranteed to be immutable. *

* @see AttitudeProvider * @author Véronique Pommier-Maurussane */ public abstract class GroundPointing implements AttitudeProvider { /** J axis. */ private static final PVCoordinates PLUS_J = new PVCoordinates(Vector3D.PLUS_J, Vector3D.ZERO, Vector3D.ZERO); /** K axis. */ private static final PVCoordinates PLUS_K = new PVCoordinates(Vector3D.PLUS_K, Vector3D.ZERO, Vector3D.ZERO); /** Inertial frame. */ private final Frame inertialFrame; /** Body frame. */ private final Frame bodyFrame; /** Default constructor. * Build a new instance with arbitrary default elements. * @param inertialFrame frame in which orbital velocities are computed * @param bodyFrame the frame that rotates with the body * @since 7.1 */ protected GroundPointing(final Frame inertialFrame, final Frame bodyFrame) { if (!inertialFrame.isPseudoInertial()) { throw new OrekitException(OrekitMessages.NON_PSEUDO_INERTIAL_FRAME, inertialFrame.getName()); } this.inertialFrame = inertialFrame; this.bodyFrame = bodyFrame; } /** Get the body frame. * @return body frame */ public Frame getBodyFrame() { return bodyFrame; } /** Compute the target point position/velocity in specified frame. *

* This method is {@code public} only to allow users to subclass this * abstract class from other packages. It is not intended to * be used directly. *

* @param pvProv provider for PV coordinates * @param date date at which target point is requested * @param frame frame in which observed ground point should be provided * @return observed ground point position (element 0) and velocity (at index 1) * in specified frame */ public abstract TimeStampedPVCoordinates getTargetPV(PVCoordinatesProvider pvProv, AbsoluteDate date, Frame frame); /** Compute the target point position/velocity in specified frame. * @param pvProv provider for PV coordinates * @param date date at which target point is requested * @param frame frame in which observed ground point should be provided * @param type of the fiels elements * @return observed ground point position (element 0) and velocity (at index 1) * in specified frame * @since 9.0 */ public abstract > TimeStampedFieldPVCoordinates getTargetPV(FieldPVCoordinatesProvider pvProv, FieldAbsoluteDate date, Frame frame); /** {@inheritDoc} */ public Attitude getAttitude(final PVCoordinatesProvider pvProv, final AbsoluteDate date, final Frame frame) { // satellite-target relative vector final PVCoordinates pva = pvProv.getPVCoordinates(date, inertialFrame); final TimeStampedPVCoordinates delta = new TimeStampedPVCoordinates(date, pva, getTargetPV(pvProv, date, inertialFrame)); // spacecraft and target should be away from each other to define a pointing direction if (delta.getPosition().getNorm() == 0.0) { throw new OrekitException(OrekitMessages.SATELLITE_COLLIDED_WITH_TARGET); } // attitude definition: // line of sight -> +z satellite axis, // orbital velocity -> (z, +x) half plane final Vector3D p = pva.getPosition(); final Vector3D v = pva.getVelocity(); final Vector3D a = pva.getAcceleration(); final double r2 = p.getNormSq(); final double r = FastMath.sqrt(r2); final Vector3D keplerianJerk = new Vector3D(-3 * Vector3D.dotProduct(p, v) / r2, a, -a.getNorm() / r, v); final PVCoordinates velocity = new PVCoordinates(v, a, keplerianJerk); final PVCoordinates los = delta.normalize(); final PVCoordinates normal = PVCoordinates.crossProduct(delta, velocity).normalize(); AngularCoordinates ac = new AngularCoordinates(los, normal, PLUS_K, PLUS_J, 1.0e-9); if (frame != inertialFrame) { // prepend transform from specified frame to inertial frame ac = ac.addOffset(frame.getTransformTo(inertialFrame, date).getAngular()); } // build the attitude return new Attitude(date, frame, ac); } /** {@inheritDoc} */ public >FieldAttitude getAttitude(final FieldPVCoordinatesProvider pvProv, final FieldAbsoluteDate date, final Frame frame) { // satellite-target relative vector final FieldPVCoordinates pva = pvProv.getPVCoordinates(date, inertialFrame); final TimeStampedFieldPVCoordinates delta = new TimeStampedFieldPVCoordinates<>(date, pva, getTargetPV(pvProv, date, inertialFrame)); // spacecraft and target should be away from each other to define a pointing direction if (delta.getPosition().getNorm().getReal() == 0.0) { throw new OrekitException(OrekitMessages.SATELLITE_COLLIDED_WITH_TARGET); } // attitude definition: // line of sight -> +z satellite axis, // orbital velocity -> (z, +x) half plane final FieldVector3D p = pva.getPosition(); final FieldVector3D v = pva.getVelocity(); final FieldVector3D a = pva.getAcceleration(); final T r2 = p.getNormSq(); final T r = r2.sqrt(); final FieldVector3D keplerianJerk = new FieldVector3D<>(FieldVector3D.dotProduct(p, v).multiply(-3).divide(r2), a, a.getNorm().divide(r).multiply(-1), v); final FieldPVCoordinates velocity = new FieldPVCoordinates<>(v, a, keplerianJerk); final FieldPVCoordinates los = delta.normalize(); final FieldPVCoordinates normal = (delta.crossProduct(velocity)).normalize(); final FieldVector3D zero = FieldVector3D.getZero(r.getField()); final FieldVector3D plusK = FieldVector3D.getPlusK(r.getField()); final FieldVector3D plusJ = FieldVector3D.getPlusJ(r.getField()); FieldAngularCoordinates ac = new FieldAngularCoordinates<>(los, normal, new FieldPVCoordinates<>(plusK, zero, zero), new FieldPVCoordinates<>(plusJ, zero, zero), 1.0e-6); if (frame != inertialFrame) { // prepend transform from specified frame to inertial frame ac = ac.addOffset(new FieldAngularCoordinates<>(r.getField(), frame.getTransformTo(inertialFrame, date.toAbsoluteDate()).getAngular())); } // build the attitude return new FieldAttitude<>(date, frame, ac); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy