org.orekit.data.PolynomialNutation Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of orekit Show documentation
Show all versions of orekit Show documentation
OREKIT (ORbits Extrapolation KIT) is a low level space dynamics library.
It provides basic elements (orbits, dates, attitude, frames ...) and
various algorithms to handle them (conversions, analytical and numerical
propagation, pointing ...).
/* Copyright 2002-2021 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.data;
import java.io.Serializable;
import org.hipparchus.CalculusFieldElement;
import org.orekit.utils.Constants;
/**
* Polynomial nutation function.
*
* @author Luc Maisonobe
* @see PoissonSeries
*/
public class PolynomialNutation implements Serializable {
/** Serializable UID. */
private static final long serialVersionUID = 20131007L;
/** Coefficients of the polynomial part. */
private double[] coefficients;
/** Build a polynomial from its coefficients.
* @param coefficients polynomial coefficients in increasing degree
*/
public PolynomialNutation(final double... coefficients) {
this.coefficients = coefficients.clone();
}
/** Evaluate the value of the polynomial.
* @param tc date offset in Julian centuries
* @return value of the polynomial
*/
public double value(final double tc) {
double p = 0;
for (int i = coefficients.length - 1; i >= 0; --i) {
p = p * tc + coefficients[i];
}
return p;
}
/** Evaluate the time derivative of the polynomial.
* @param tc date offset in Julian centuries
* @return time derivative of the polynomial
*/
public double derivative(final double tc) {
double p = 0;
for (int i = coefficients.length - 1; i > 0; --i) {
p = p * tc + i * coefficients[i];
}
return p / Constants.JULIAN_CENTURY;
}
/** Evaluate the value of the polynomial.
* @param tc date offset in Julian centuries
* @param type of the filed elements
* @return value of the polynomial
*/
public > T value(final T tc) {
T p = tc.getField().getZero();
for (int i = coefficients.length - 1; i >= 0; --i) {
p = p.multiply(tc).add(coefficients[i]);
}
return p;
}
/** Evaluate the time derivative of the polynomial.
* @param tc date offset in Julian centuries
* @param type of the filed elements
* @return time derivative of the polynomial
*/
public > T derivative(final T tc) {
T p = tc.getField().getZero();
for (int i = coefficients.length - 1; i > 0; --i) {
p = p.multiply(tc).add( i * coefficients[i]);
}
return p.divide(Constants.JULIAN_CENTURY);
}
}