All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.orekit.bodies.Ellipse Maven / Gradle / Ivy

Go to download

OREKIT (ORbits Extrapolation KIT) is a low level space dynamics library. It provides basic elements (orbits, dates, attitude, frames ...) and various algorithms to handle them (conversions, analytical and numerical propagation, pointing ...).

There is a newer version: 12.2
Show newest version
/* Copyright 2002-2021 CS GROUP
 * Licensed to CS GROUP (CS) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * CS licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.orekit.bodies;

import java.io.Serializable;

import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.geometry.euclidean.twod.Vector2D;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathArrays;
import org.hipparchus.util.SinCos;
import org.orekit.frames.Frame;
import org.orekit.utils.TimeStampedPVCoordinates;

/**
 * Model of a 2D ellipse in 3D space.
 * 

* These ellipses are mainly created as plane sections of general 3D ellipsoids, * but can be used for other purposes. *

*

* Instances of this class are guaranteed to be immutable. *

* @see Ellipsoid#getPlaneSection(Vector3D, Vector3D) * @since 7.0 * @author Luc Maisonobe */ public class Ellipse implements Serializable { /** Serializable UID. */ private static final long serialVersionUID = 20140925L; /** Convergence limit. */ private static final double ANGULAR_THRESHOLD = 1.0e-12; /** Center of the 2D ellipse. */ private final Vector3D center; /** Unit vector along the major axis. */ private final Vector3D u; /** Unit vector along the minor axis. */ private final Vector3D v; /** Semi major axis. */ private final double a; /** Semi minor axis. */ private final double b; /** Frame in which the ellipse is defined. */ private final Frame frame; /** Semi major axis radius power 2. */ private final double a2; /** Semi minor axis power 2. */ private final double b2; /** Eccentricity power 2. */ private final double e2; /** 1 minus flatness. */ private final double g; /** g * g. */ private final double g2; /** Evolute factor along major axis. */ private final double evoluteFactorX; /** Evolute factor along minor axis. */ private final double evoluteFactorY; /** Simple constructor. * @param center center of the 2D ellipse * @param u unit vector along the major axis * @param v unit vector along the minor axis * @param a semi major axis * @param b semi minor axis * @param frame frame in which the ellipse is defined */ public Ellipse(final Vector3D center, final Vector3D u, final Vector3D v, final double a, final double b, final Frame frame) { this.center = center; this.u = u; this.v = v; this.a = a; this.b = b; this.frame = frame; this.a2 = a * a; this.g = b / a; this.g2 = g * g; this.e2 = 1 - g2; this.b2 = b * b; this.evoluteFactorX = (a2 - b2) / (a2 * a2); this.evoluteFactorY = (b2 - a2) / (b2 * b2); } /** Get the center of the 2D ellipse. * @return center of the 2D ellipse */ public Vector3D getCenter() { return center; } /** Get the unit vector along the major axis. * @return unit vector along the major axis */ public Vector3D getU() { return u; } /** Get the unit vector along the minor axis. * @return unit vector along the minor axis */ public Vector3D getV() { return v; } /** Get the semi major axis. * @return semi major axis */ public double getA() { return a; } /** Get the semi minor axis. * @return semi minor axis */ public double getB() { return b; } /** Get the defining frame. * @return defining frame */ public Frame getFrame() { return frame; } /** Get a point of the 2D ellipse. * @param theta angular parameter on the ellipse (really the eccentric anomaly) * @return ellipse point at theta, in underlying ellipsoid frame */ public Vector3D pointAt(final double theta) { final SinCos scTheta = FastMath.sinCos(theta); return toSpace(new Vector2D(a * scTheta.cos(), b * scTheta.sin())); } /** Create a point from its ellipse-relative coordinates. * @param p point defined with respect to ellipse * @return point defined with respect to 3D frame * @see #toPlane(Vector3D) */ public Vector3D toSpace(final Vector2D p) { return new Vector3D(1, center, p.getX(), u, p.getY(), v); } /** Project a point to the ellipse plane. * @param p point defined with respect to 3D frame * @return point defined with respect to ellipse * @see #toSpace(Vector2D) */ public Vector2D toPlane(final Vector3D p) { final Vector3D delta = p.subtract(center); return new Vector2D(Vector3D.dotProduct(delta, u), Vector3D.dotProduct(delta, v)); } /** Find the closest ellipse point. * @param p point in the ellipse plane to project on the ellipse itself * @return closest point belonging to 2D meridian ellipse */ public Vector2D projectToEllipse(final Vector2D p) { final double x = FastMath.abs(p.getX()); final double y = p.getY(); if (x <= ANGULAR_THRESHOLD * FastMath.abs(y)) { // the point is almost on the minor axis, approximate the ellipse with // the osculating circle whose center is at evolute cusp along minor axis final double osculatingRadius = a2 / b; final double evoluteCuspZ = FastMath.copySign(a * e2 / g, -y); final double deltaZ = y - evoluteCuspZ; final double ratio = osculatingRadius / FastMath.hypot(deltaZ, x); return new Vector2D(FastMath.copySign(ratio * x, p.getX()), evoluteCuspZ + ratio * deltaZ); } if (FastMath.abs(y) <= ANGULAR_THRESHOLD * x) { // the point is almost on the major axis final double osculatingRadius = b2 / a; final double evoluteCuspR = a * e2; final double deltaR = x - evoluteCuspR; if (deltaR >= 0) { // the point is outside of the ellipse evolute, approximate the ellipse // with the osculating circle whose center is at evolute cusp along major axis final double ratio = osculatingRadius / FastMath.hypot(y, deltaR); return new Vector2D(FastMath.copySign(evoluteCuspR + ratio * deltaR, p.getX()), ratio * y); } // the point is on the part of the major axis within ellipse evolute // we can compute the closest ellipse point analytically final double rEllipse = x / e2; return new Vector2D(FastMath.copySign(rEllipse, p.getX()), FastMath.copySign(g * FastMath.sqrt(a2 - rEllipse * rEllipse), y)); } else { // initial point at evolute cusp along major axis double omegaX = a * e2; double omegaY = 0.0; double projectedX = x; double projectedY = y; double deltaX = Double.POSITIVE_INFINITY; double deltaY = Double.POSITIVE_INFINITY; int count = 0; final double threshold = ANGULAR_THRESHOLD * ANGULAR_THRESHOLD * a2; while ((deltaX * deltaX + deltaY * deltaY) > threshold && count++ < 100) { // this loop usually converges in 3 iterations // find point at the intersection of ellipse and line going from query point to evolute point final double dx = x - omegaX; final double dy = y - omegaY; final double alpha = b2 * dx * dx + a2 * dy * dy; final double betaPrime = b2 * omegaX * dx + a2 * omegaY * dy; final double gamma = b2 * omegaX * omegaX + a2 * omegaY * omegaY - a2 * b2; final double deltaPrime = MathArrays.linearCombination(betaPrime, betaPrime, -alpha, gamma); final double ratio = (betaPrime <= 0) ? (FastMath.sqrt(deltaPrime) - betaPrime) / alpha : -gamma / (FastMath.sqrt(deltaPrime) + betaPrime); final double previousX = projectedX; final double previousY = projectedY; projectedX = omegaX + ratio * dx; projectedY = omegaY + ratio * dy; // find new evolute point omegaX = evoluteFactorX * projectedX * projectedX * projectedX; omegaY = evoluteFactorY * projectedY * projectedY * projectedY; // compute convergence parameters deltaX = projectedX - previousX; deltaY = projectedY - previousY; } return new Vector2D(FastMath.copySign(projectedX, p.getX()), projectedY); } } /** Project position-velocity-acceleration on an ellipse. * @param pv position-velocity-acceleration to project, in the reference frame * @return projected position-velocity-acceleration */ public TimeStampedPVCoordinates projectToEllipse(final TimeStampedPVCoordinates pv) { // find the closest point in the meridian plane final Vector2D p2D = toPlane(pv.getPosition()); final Vector2D e2D = projectToEllipse(p2D); // tangent to the ellipse final double fx = -a2 * e2D.getY(); final double fy = b2 * e2D.getX(); final double f2 = fx * fx + fy * fy; final double f = FastMath.sqrt(f2); final Vector2D tangent = new Vector2D(fx / f, fy / f); // normal to the ellipse (towards interior) final Vector2D normal = new Vector2D(-tangent.getY(), tangent.getX()); // center of curvature final double x2 = e2D.getX() * e2D.getX(); final double y2 = e2D.getY() * e2D.getY(); final double eX = evoluteFactorX * x2; final double eY = evoluteFactorY * y2; final double omegaX = eX * e2D.getX(); final double omegaY = eY * e2D.getY(); // velocity projection ratio final double rho = FastMath.hypot(e2D.getX() - omegaX, e2D.getY() - omegaY); final double d = FastMath.hypot(p2D.getX() - omegaX, p2D.getY() - omegaY); final double projectionRatio = rho / d; // tangential velocity final Vector2D pDot2D = new Vector2D(Vector3D.dotProduct(pv.getVelocity(), u), Vector3D.dotProduct(pv.getVelocity(), v)); final double pDotTangent = pDot2D.dotProduct(tangent); final double pDotNormal = pDot2D.dotProduct(normal); final double eDotTangent = projectionRatio * pDotTangent; final Vector2D eDot2D = new Vector2D(eDotTangent, tangent); final Vector2D tangentDot = new Vector2D(a2 * b2 * (e2D.getX() * eDot2D.getY() - e2D.getY() * eDot2D.getX()) / f2, normal); // velocity of the center of curvature in the meridian plane final double omegaXDot = 3 * eX * eDotTangent * tangent.getX(); final double omegaYDot = 3 * eY * eDotTangent * tangent.getY(); // derivative of the projection ratio final double voz = omegaXDot * tangent.getY() - omegaYDot * tangent.getX(); final double vsz = -pDotNormal; final double projectionRatioDot = ((rho - d) * voz - rho * vsz) / (d * d); // acceleration final Vector2D pDotDot2D = new Vector2D(Vector3D.dotProduct(pv.getAcceleration(), u), Vector3D.dotProduct(pv.getAcceleration(), v)); final double pDotDotTangent = pDotDot2D.dotProduct(tangent); final double pDotTangentDot = pDot2D.dotProduct(tangentDot); final double eDotDotTangent = projectionRatio * (pDotDotTangent + pDotTangentDot) + projectionRatioDot * pDotTangent; final Vector2D eDotDot2D = new Vector2D(eDotDotTangent, tangent, eDotTangent, tangentDot); // back to 3D final Vector3D e3D = toSpace(e2D); final Vector3D eDot3D = new Vector3D(eDot2D.getX(), u, eDot2D.getY(), v); final Vector3D eDotDot3D = new Vector3D(eDotDot2D.getX(), u, eDotDot2D.getY(), v); return new TimeStampedPVCoordinates(pv.getDate(), e3D, eDot3D, eDotDot3D); } /** Find the center of curvature (point on the evolute) at the nadir of a point. * @param point point in the ellipse plane * @return center of curvature of the ellipse directly at point nadir * @since 7.1 */ public Vector2D getCenterOfCurvature(final Vector2D point) { final Vector2D projected = projectToEllipse(point); return new Vector2D(evoluteFactorX * projected.getX() * projected.getX() * projected.getX(), evoluteFactorY * projected.getY() * projected.getY() * projected.getY()); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy