All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.orekit.propagation.SpacecraftState Maven / Gradle / Ivy

Go to download

OREKIT (ORbits Extrapolation KIT) is a low level space dynamics library. It provides basic elements (orbits, dates, attitude, frames ...) and various algorithms to handle them (conversions, analytical and numerical propagation, pointing ...).

There is a newer version: 12.2
Show newest version
/* Copyright 2002-2021 CS GROUP
 * Licensed to CS GROUP (CS) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * CS licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.orekit.propagation;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.Stream;

import org.hipparchus.analysis.interpolation.HermiteInterpolator;
import org.hipparchus.exception.LocalizedCoreFormats;
import org.hipparchus.exception.MathIllegalStateException;
import org.hipparchus.geometry.euclidean.threed.Rotation;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.util.FastMath;
import org.orekit.attitudes.Attitude;
import org.orekit.attitudes.LofOffset;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitIllegalArgumentException;
import org.orekit.errors.OrekitIllegalStateException;
import org.orekit.errors.OrekitMessages;
import org.orekit.frames.Frame;
import org.orekit.frames.LOFType;
import org.orekit.frames.Transform;
import org.orekit.orbits.Orbit;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.TimeInterpolable;
import org.orekit.time.TimeShiftable;
import org.orekit.time.TimeStamped;
import org.orekit.utils.AbsolutePVCoordinates;
import org.orekit.utils.TimeStampedAngularCoordinates;
import org.orekit.utils.TimeStampedPVCoordinates;

/** This class is the representation of a complete state holding orbit, attitude
 * and mass information at a given date.
 *
 * 

It contains an {@link Orbit orbital state} at a current * {@link AbsoluteDate} both handled by an {@link Orbit}, plus the current * mass and attitude. Orbit and state are guaranteed to be consistent in terms * of date and reference frame. The spacecraft state may also contain additional * states, which are simply named double arrays which can hold any user-defined * data. *

*

* The state can be slightly shifted to close dates. This shift is based on * a simple Keplerian model for orbit, a linear extrapolation for attitude * taking the spin rate into account and no mass change. It is not * intended as a replacement for proper orbit and attitude propagation but * should be sufficient for either small time shifts or coarse accuracy. *

*

* The instance SpacecraftState is guaranteed to be immutable. *

* @see org.orekit.propagation.numerical.NumericalPropagator * @author Fabien Maussion * @author Véronique Pommier-Maurussane * @author Luc Maisonobe */ public class SpacecraftState implements TimeStamped, TimeShiftable, TimeInterpolable, Serializable { /** Serializable UID. */ private static final long serialVersionUID = 20130407L; /** Default mass. */ private static final double DEFAULT_MASS = 1000.0; /** * tolerance on date comparison in {@link #checkConsistency(Orbit, Attitude)}. 100 ns * corresponds to sub-mm accuracy at LEO orbital velocities. */ private static final double DATE_INCONSISTENCY_THRESHOLD = 100e-9; /** Orbital state. */ private final Orbit orbit; /** Trajectory state, when it is not an orbit. */ private final AbsolutePVCoordinates absPva; /** Attitude. */ private final Attitude attitude; /** Current mass (kg). */ private final double mass; /** Additional states. */ private final Map additional; /** Build a spacecraft state from orbit only. *

Attitude and mass are set to unspecified non-null arbitrary values.

* @param orbit the orbit */ public SpacecraftState(final Orbit orbit) { this(orbit, new LofOffset(orbit.getFrame(), LOFType.LVLH_CCSDS).getAttitude(orbit, orbit.getDate(), orbit.getFrame()), DEFAULT_MASS, null); } /** Build a spacecraft state from orbit and attitude provider. *

Mass is set to an unspecified non-null arbitrary value.

* @param orbit the orbit * @param attitude attitude * @exception IllegalArgumentException if orbit and attitude dates * or frames are not equal */ public SpacecraftState(final Orbit orbit, final Attitude attitude) throws IllegalArgumentException { this(orbit, attitude, DEFAULT_MASS, null); } /** Create a new instance from orbit and mass. *

Attitude law is set to an unspecified default attitude.

* @param orbit the orbit * @param mass the mass (kg) */ public SpacecraftState(final Orbit orbit, final double mass) { this(orbit, new LofOffset(orbit.getFrame(), LOFType.LVLH_CCSDS).getAttitude(orbit, orbit.getDate(), orbit.getFrame()), mass, null); } /** Build a spacecraft state from orbit, attitude provider and mass. * @param orbit the orbit * @param attitude attitude * @param mass the mass (kg) * @exception IllegalArgumentException if orbit and attitude dates * or frames are not equal */ public SpacecraftState(final Orbit orbit, final Attitude attitude, final double mass) throws IllegalArgumentException { this(orbit, attitude, mass, null); } /** Build a spacecraft state from orbit only. *

Attitude and mass are set to unspecified non-null arbitrary values.

* @param orbit the orbit * @param additional additional states */ public SpacecraftState(final Orbit orbit, final Map additional) { this(orbit, new LofOffset(orbit.getFrame(), LOFType.LVLH_CCSDS).getAttitude(orbit, orbit.getDate(), orbit.getFrame()), DEFAULT_MASS, additional); } /** Build a spacecraft state from orbit and attitude provider. *

Mass is set to an unspecified non-null arbitrary value.

* @param orbit the orbit * @param attitude attitude * @param additional additional states * @exception IllegalArgumentException if orbit and attitude dates * or frames are not equal */ public SpacecraftState(final Orbit orbit, final Attitude attitude, final Map additional) throws IllegalArgumentException { this(orbit, attitude, DEFAULT_MASS, additional); } /** Create a new instance from orbit and mass. *

Attitude law is set to an unspecified default attitude.

* @param orbit the orbit * @param mass the mass (kg) * @param additional additional states */ public SpacecraftState(final Orbit orbit, final double mass, final Map additional) { this(orbit, new LofOffset(orbit.getFrame(), LOFType.LVLH_CCSDS).getAttitude(orbit, orbit.getDate(), orbit.getFrame()), mass, additional); } /** Build a spacecraft state from orbit, attitude provider and mass. * @param orbit the orbit * @param attitude attitude * @param mass the mass (kg) * @param additional additional states (may be null if no additional states are available) * @exception IllegalArgumentException if orbit and attitude dates * or frames are not equal */ public SpacecraftState(final Orbit orbit, final Attitude attitude, final double mass, final Map additional) throws IllegalArgumentException { checkConsistency(orbit, attitude); this.orbit = orbit; this.absPva = null; this.attitude = attitude; this.mass = mass; if (additional == null) { this.additional = Collections.emptyMap(); } else { this.additional = new HashMap(additional.size()); for (final Map.Entry entry : additional.entrySet()) { this.additional.put(entry.getKey(), entry.getValue().clone()); } } } /** Build a spacecraft state from orbit only. *

Attitude and mass are set to unspecified non-null arbitrary values.

* @param absPva position-velocity-acceleration */ public SpacecraftState(final AbsolutePVCoordinates absPva) { this(absPva, new LofOffset(absPva.getFrame(), LOFType.LVLH_CCSDS).getAttitude(absPva, absPva.getDate(), absPva.getFrame()), DEFAULT_MASS, null); } /** Build a spacecraft state from orbit and attitude provider. *

Mass is set to an unspecified non-null arbitrary value.

* @param absPva position-velocity-acceleration * @param attitude attitude * @exception IllegalArgumentException if orbit and attitude dates * or frames are not equal */ public SpacecraftState(final AbsolutePVCoordinates absPva, final Attitude attitude) throws IllegalArgumentException { this(absPva, attitude, DEFAULT_MASS, null); } /** Create a new instance from orbit and mass. *

Attitude law is set to an unspecified default attitude.

* @param absPva position-velocity-acceleration * @param mass the mass (kg) */ public SpacecraftState(final AbsolutePVCoordinates absPva, final double mass) { this(absPva, new LofOffset(absPva.getFrame(), LOFType.LVLH_CCSDS).getAttitude(absPva, absPva.getDate(), absPva.getFrame()), mass, null); } /** Build a spacecraft state from orbit, attitude provider and mass. * @param absPva position-velocity-acceleration * @param attitude attitude * @param mass the mass (kg) * @exception IllegalArgumentException if orbit and attitude dates * or frames are not equal */ public SpacecraftState(final AbsolutePVCoordinates absPva, final Attitude attitude, final double mass) throws IllegalArgumentException { this(absPva, attitude, mass, null); } /** Build a spacecraft state from orbit only. *

Attitude and mass are set to unspecified non-null arbitrary values.

* @param absPva position-velocity-acceleration * @param additional additional states */ public SpacecraftState(final AbsolutePVCoordinates absPva, final Map additional) { this(absPva, new LofOffset(absPva.getFrame(), LOFType.LVLH_CCSDS).getAttitude(absPva, absPva.getDate(), absPva.getFrame()), DEFAULT_MASS, additional); } /** Build a spacecraft state from orbit and attitude provider. *

Mass is set to an unspecified non-null arbitrary value.

* @param absPva position-velocity-acceleration * @param attitude attitude * @param additional additional states * @exception IllegalArgumentException if orbit and attitude dates * or frames are not equal */ public SpacecraftState(final AbsolutePVCoordinates absPva, final Attitude attitude, final Map additional) throws IllegalArgumentException { this(absPva, attitude, DEFAULT_MASS, additional); } /** Create a new instance from orbit and mass. *

Attitude law is set to an unspecified default attitude.

* @param absPva position-velocity-acceleration * @param mass the mass (kg) * @param additional additional states */ public SpacecraftState(final AbsolutePVCoordinates absPva, final double mass, final Map additional) { this(absPva, new LofOffset(absPva.getFrame(), LOFType.LVLH_CCSDS).getAttitude(absPva, absPva.getDate(), absPva.getFrame()), mass, additional); } /** Build a spacecraft state from orbit, attitude provider and mass. * @param absPva position-velocity-acceleration * @param attitude attitude * @param mass the mass (kg) * @param additional additional states (may be null if no additional states are available) * @exception IllegalArgumentException if orbit and attitude dates * or frames are not equal */ public SpacecraftState(final AbsolutePVCoordinates absPva, final Attitude attitude, final double mass, final Map additional) throws IllegalArgumentException { checkConsistency(absPva, attitude); this.orbit = null; this.absPva = absPva; this.attitude = attitude; this.mass = mass; if (additional == null) { this.additional = Collections.emptyMap(); } else { this.additional = new HashMap(additional.size()); for (final Map.Entry entry : additional.entrySet()) { this.additional.put(entry.getKey(), entry.getValue().clone()); } } } /** Add an additional state. *

* {@link SpacecraftState SpacecraftState} instances are immutable, * so this method does not change the instance, but rather * creates a new instance, which has the same orbit, attitude, mass * and additional states as the original instance, except it also * has the specified state. If the original instance already had an * additional state with the same name, it will be overridden. If it * did not have any additional state with that name, the new instance * will have one more additional state than the original instance. *

* @param name name of the additional state * @param value value of the additional state * @return a new instance, with the additional state added * @see #hasAdditionalState(String) * @see #getAdditionalState(String) * @see #getAdditionalStates() */ public SpacecraftState addAdditionalState(final String name, final double... value) { final Map newMap = new HashMap(additional.size() + 1); newMap.putAll(additional); newMap.put(name, value.clone()); if (absPva == null) { return new SpacecraftState(orbit, attitude, mass, newMap); } else { return new SpacecraftState(absPva, attitude, mass, newMap); } } /** Check orbit and attitude dates are equal. * @param orbit the orbit * @param attitude attitude * @exception IllegalArgumentException if orbit and attitude dates * are not equal */ private static void checkConsistency(final Orbit orbit, final Attitude attitude) throws IllegalArgumentException { if (FastMath.abs(orbit.getDate().durationFrom(attitude.getDate())) > DATE_INCONSISTENCY_THRESHOLD) { throw new OrekitIllegalArgumentException(OrekitMessages.ORBIT_AND_ATTITUDE_DATES_MISMATCH, orbit.getDate(), attitude.getDate()); } if (orbit.getFrame() != attitude.getReferenceFrame()) { throw new OrekitIllegalArgumentException(OrekitMessages.FRAMES_MISMATCH, orbit.getFrame().getName(), attitude.getReferenceFrame().getName()); } } /** Check if the state contains an orbit part. *

* A state contains either an {@link AbsolutePVCoordinates absolute * position-velocity-acceleration} or an {@link Orbit orbit}. *

* @return true if state contains an orbit (in which case {@link #getOrbit()} * will not throw an exception), or false if the state contains an * absolut position-velocity-acceleration (in which case {@link #getAbsPVA()} * will not throw an exception) */ public boolean isOrbitDefined() { return orbit != null; } /** Check AbsolutePVCoordinates and attitude dates are equal. * @param absPva position-velocity-acceleration * @param attitude attitude * @exception IllegalArgumentException if orbit and attitude dates * are not equal */ private static void checkConsistency(final AbsolutePVCoordinates absPva, final Attitude attitude) throws IllegalArgumentException { if (FastMath.abs(absPva.getDate().durationFrom(attitude.getDate())) > DATE_INCONSISTENCY_THRESHOLD) { throw new OrekitIllegalArgumentException(OrekitMessages.ORBIT_AND_ATTITUDE_DATES_MISMATCH, absPva.getDate(), attitude.getDate()); } if (absPva.getFrame() != attitude.getReferenceFrame()) { throw new OrekitIllegalArgumentException(OrekitMessages.FRAMES_MISMATCH, absPva.getFrame().getName(), attitude.getReferenceFrame().getName()); } } /** Get a time-shifted state. *

* The state can be slightly shifted to close dates. This shift is based on * simple models. For orbits, the model is a Keplerian one if no derivatives * are available in the orbit, or Keplerian plus quadratic effect of the * non-Keplerian acceleration if derivatives are available. For attitude, * a polynomial model is used. Neither mass nor additional states change. * Shifting is not intended as a replacement for proper orbit * and attitude propagation but should be sufficient for small time shifts * or coarse accuracy. *

*

* As a rough order of magnitude, the following table shows the extrapolation * errors obtained between this simple shift method and an {@link * org.orekit.propagation.numerical.NumericalPropagator numerical * propagator} for a low Earth Sun Synchronous Orbit, with a 20x20 gravity field, * Sun and Moon third bodies attractions, drag and solar radiation pressure. * Beware that these results will be different for other orbits. *

* * * * * * * * * *
Extrapolation Error
interpolation time (s)position error without derivatives (m)position error with derivatives (m)
60 18 1.1
120 72 9.1
300 447 140
60016011067
90031413307
* @param dt time shift in seconds * @return a new state, shifted with respect to the instance (which is immutable) * except for the mass and additional states which stay unchanged */ public SpacecraftState shiftedBy(final double dt) { if (absPva == null) { return new SpacecraftState(orbit.shiftedBy(dt), attitude.shiftedBy(dt), mass, additional); } else { return new SpacecraftState(absPva.shiftedBy(dt), attitude.shiftedBy(dt), mass, additional); } } /** {@inheritDoc} *

* The additional states that are interpolated are the ones already present * in the instance. The sample instances must therefore have at least the same * additional states has the instance. They may have more additional states, * but the extra ones will be ignored. *

*

* The instance and all the sample instances must be based on similar * trajectory data, i.e. they must either all be based on orbits or all be based * on absolute position-velocity-acceleration. Any inconsistency will trigger * an {@link OrekitIllegalStateException}. *

*

* As this implementation of interpolation is polynomial, it should be used only * with small samples (about 10-20 points) in order to avoid Runge's phenomenon * and numerical problems (including NaN appearing). *

* @exception OrekitIllegalStateException if some instances are not based on * similar trajectory data */ public SpacecraftState interpolate(final AbsoluteDate date, final Stream sample) { // prepare interpolators final List orbits; final List absPvas; if (isOrbitDefined()) { orbits = new ArrayList(); absPvas = null; } else { orbits = null; absPvas = new ArrayList(); } final List attitudes = new ArrayList(); final HermiteInterpolator massInterpolator = new HermiteInterpolator(); final Map additionalInterpolators = new HashMap(additional.size()); for (final String name : additional.keySet()) { additionalInterpolators.put(name, new HermiteInterpolator()); } // extract sample data sample.forEach(state -> { final double deltaT = state.getDate().durationFrom(date); if (isOrbitDefined()) { orbits.add(state.getOrbit()); } else { absPvas.add(state.getAbsPVA()); } attitudes.add(state.getAttitude()); massInterpolator.addSamplePoint(deltaT, new double[] { state.getMass() }); for (final Map.Entry entry : additionalInterpolators.entrySet()) { entry.getValue().addSamplePoint(deltaT, state.getAdditionalState(entry.getKey())); } }); // perform interpolations final Orbit interpolatedOrbit; final AbsolutePVCoordinates interpolatedAbsPva; if (isOrbitDefined()) { interpolatedOrbit = orbit.interpolate(date, orbits); interpolatedAbsPva = null; } else { interpolatedOrbit = null; interpolatedAbsPva = absPva.interpolate(date, absPvas); } final Attitude interpolatedAttitude = attitude.interpolate(date, attitudes); final double interpolatedMass = massInterpolator.value(0)[0]; final Map interpolatedAdditional; if (additional.isEmpty()) { interpolatedAdditional = null; } else { interpolatedAdditional = new HashMap(additional.size()); for (final Map.Entry entry : additionalInterpolators.entrySet()) { interpolatedAdditional.put(entry.getKey(), entry.getValue().value(0)); } } // create the complete interpolated state if (isOrbitDefined()) { return new SpacecraftState(interpolatedOrbit, interpolatedAttitude, interpolatedMass, interpolatedAdditional); } else { return new SpacecraftState(interpolatedAbsPva, interpolatedAttitude, interpolatedMass, interpolatedAdditional); } } /** Get the absolute position-velocity-acceleration. *

* A state contains either an {@link AbsolutePVCoordinates absolute * position-velocity-acceleration} or an {@link Orbit orbit}. Which * one is present can be checked using {@link #isOrbitDefined()}. *

* @return absolute position-velocity-acceleration * @exception OrekitIllegalStateException if position-velocity-acceleration is null, * which mean the state rather contains an {@link Orbit} * @see #isOrbitDefined() * @see #getOrbit() */ public AbsolutePVCoordinates getAbsPVA() throws OrekitIllegalStateException { if (absPva == null) { throw new OrekitIllegalStateException(OrekitMessages.UNDEFINED_ABSOLUTE_PVCOORDINATES); } return absPva; } /** Get the current orbit. *

* A state contains either an {@link AbsolutePVCoordinates absolute * position-velocity-acceleration} or an {@link Orbit orbit}. Which * one is present can be checked using {@link #isOrbitDefined()}. *

* @return the orbit * @exception OrekitIllegalStateException if orbit is null, * which means the state rather contains an {@link AbsolutePVCoordinates absolute * position-velocity-acceleration} * @see #isOrbitDefined() * @see #getAbsPVA() */ public Orbit getOrbit() throws OrekitIllegalStateException { if (orbit == null) { throw new OrekitIllegalStateException(OrekitMessages.UNDEFINED_ORBIT); } return orbit; } /** Get the date. * @return date */ public AbsoluteDate getDate() { return (absPva == null) ? orbit.getDate() : absPva.getDate(); } /** Get the defining frame. * @return the frame in which state is defined */ public Frame getFrame() { return (absPva == null) ? orbit.getFrame() : absPva.getFrame(); } /** Check if an additional state is available. * @param name name of the additional state * @return true if the additional state is available * @see #addAdditionalState(String, double[]) * @see #getAdditionalState(String) * @see #getAdditionalStates() */ public boolean hasAdditionalState(final String name) { return additional.containsKey(name); } /** Check if two instances have the same set of additional states available. *

* Only the names and dimensions of the additional states are compared, * not their values. *

* @param state state to compare to instance * @exception MathIllegalStateException if an additional state does not have * the same dimension in both states */ public void ensureCompatibleAdditionalStates(final SpacecraftState state) throws MathIllegalStateException { // check instance additional states is a subset of the other one for (final Map.Entry entry : additional.entrySet()) { final double[] other = state.additional.get(entry.getKey()); if (other == null) { throw new OrekitException(OrekitMessages.UNKNOWN_ADDITIONAL_STATE, entry.getKey()); } if (other.length != entry.getValue().length) { throw new MathIllegalStateException(LocalizedCoreFormats.DIMENSIONS_MISMATCH, other.length, entry.getValue().length); } } if (state.additional.size() > additional.size()) { // the other state has more additional states for (final String name : state.additional.keySet()) { if (!additional.containsKey(name)) { throw new OrekitException(OrekitMessages.UNKNOWN_ADDITIONAL_STATE, name); } } } } /** Get an additional state. * @param name name of the additional state * @return value of the additional state * @see #addAdditionalState(String, double[]) * @see #hasAdditionalState(String) * @see #getAdditionalStates() */ public double[] getAdditionalState(final String name) { if (!additional.containsKey(name)) { throw new OrekitException(OrekitMessages.UNKNOWN_ADDITIONAL_STATE, name); } return additional.get(name).clone(); } /** Get an unmodifiable map of additional states. * @return unmodifiable map of additional states * @see #addAdditionalState(String, double[]) * @see #hasAdditionalState(String) * @see #getAdditionalState(String) */ public Map getAdditionalStates() { return Collections.unmodifiableMap(additional); } /** Compute the transform from state defining frame to spacecraft frame. *

The spacecraft frame origin is at the point defined by the orbit * (or absolute position-velocity-acceleration), and its orientation is * defined by the attitude.

* @return transform from specified frame to current spacecraft frame */ public Transform toTransform() { final TimeStampedPVCoordinates pv = getPVCoordinates(); return new Transform(pv.getDate(), new Transform(pv.getDate(), pv.negate()), new Transform(pv.getDate(), attitude.getOrientation())); } /** Get the central attraction coefficient. * @return mu central attraction coefficient (m^3/s^2), or {code Double.NaN} if the * state is contains an absolute position-velocity-acceleration rather than an orbit */ public double getMu() { return (absPva == null) ? orbit.getMu() : Double.NaN; } /** Get the Keplerian period. *

The Keplerian period is computed directly from semi major axis * and central acceleration constant.

* @return keplerian period in seconds, or {code Double.NaN} if the * state is contains an absolute position-velocity-acceleration rather * than an orbit */ public double getKeplerianPeriod() { return (absPva == null) ? orbit.getKeplerianPeriod() : Double.NaN; } /** Get the Keplerian mean motion. *

The Keplerian mean motion is computed directly from semi major axis * and central acceleration constant.

* @return keplerian mean motion in radians per second, or {code Double.NaN} if the * state is contains an absolute position-velocity-acceleration rather * than an orbit */ public double getKeplerianMeanMotion() { return (absPva == null) ? orbit.getKeplerianMeanMotion() : Double.NaN; } /** Get the semi-major axis. * @return semi-major axis (m), or {code Double.NaN} if the * state is contains an absolute position-velocity-acceleration rather * than an orbit */ public double getA() { return (absPva == null) ? orbit.getA() : Double.NaN; } /** Get the first component of the eccentricity vector (as per equinoctial parameters). * @return e cos(ω + Ω), first component of eccentricity vector, or {code Double.NaN} if the * state is contains an absolute position-velocity-acceleration rather * than an orbit * @see #getE() */ public double getEquinoctialEx() { return (absPva == null) ? orbit.getEquinoctialEx() : Double.NaN; } /** Get the second component of the eccentricity vector (as per equinoctial parameters). * @return e sin(ω + Ω), second component of the eccentricity vector, or {code Double.NaN} if the * state is contains an absolute position-velocity-acceleration rather * than an orbit * @see #getE() */ public double getEquinoctialEy() { return (absPva == null) ? orbit.getEquinoctialEy() : Double.NaN; } /** Get the first component of the inclination vector (as per equinoctial parameters). * @return tan(i/2) cos(Ω), first component of the inclination vector, or {code Double.NaN} if the * state is contains an absolute position-velocity-acceleration rather * than an orbit * @see #getI() */ public double getHx() { return (absPva == null) ? orbit.getHx() : Double.NaN; } /** Get the second component of the inclination vector (as per equinoctial parameters). * @return tan(i/2) sin(Ω), second component of the inclination vector, or {code Double.NaN} if the * state is contains an absolute position-velocity-acceleration rather * than an orbit * @see #getI() */ public double getHy() { return (absPva == null) ? orbit.getHy() : Double.NaN; } /** Get the true latitude argument (as per equinoctial parameters). * @return v + ω + Ω true longitude argument (rad), or {code Double.NaN} if the * state is contains an absolute position-velocity-acceleration rather * than an orbit * @see #getLE() * @see #getLM() */ public double getLv() { return (absPva == null) ? orbit.getLv() : Double.NaN; } /** Get the eccentric latitude argument (as per equinoctial parameters). * @return E + ω + Ω eccentric longitude argument (rad), or {code Double.NaN} if the * state is contains an absolute position-velocity-acceleration rather * than an orbit * @see #getLv() * @see #getLM() */ public double getLE() { return (absPva == null) ? orbit.getLE() : Double.NaN; } /** Get the mean longitude argument (as per equinoctial parameters). * @return M + ω + Ω mean latitude argument (rad), or {code Double.NaN} if the * state is contains an absolute position-velocity-acceleration rather * than an orbit * @see #getLv() * @see #getLE() */ public double getLM() { return (absPva == null) ? orbit.getLM() : Double.NaN; } // Additional orbital elements /** Get the eccentricity. * @return eccentricity, or {code Double.NaN} if the * state is contains an absolute position-velocity-acceleration rather * than an orbit * @see #getEquinoctialEx() * @see #getEquinoctialEy() */ public double getE() { return (absPva == null) ? orbit.getE() : Double.NaN; } /** Get the inclination. * @return inclination (rad) * @see #getHx() * @see #getHy() */ public double getI() { return (absPva == null) ? orbit.getI() : Double.NaN; } /** Get the {@link TimeStampedPVCoordinates} in orbit definition frame. *

* Compute the position and velocity of the satellite. This method caches its * results, and recompute them only when the method is called with a new value * for mu. The result is provided as a reference to the internally cached * {@link TimeStampedPVCoordinates}, so the caller is responsible to copy it in a separate * {@link TimeStampedPVCoordinates} if it needs to keep the value for a while. *

* @return pvCoordinates in orbit definition frame */ public TimeStampedPVCoordinates getPVCoordinates() { return (absPva == null) ? orbit.getPVCoordinates() : absPva.getPVCoordinates(); } /** Get the {@link TimeStampedPVCoordinates} in given output frame. *

* Compute the position and velocity of the satellite. This method caches its * results, and recompute them only when the method is called with a new value * for mu. The result is provided as a reference to the internally cached * {@link TimeStampedPVCoordinates}, so the caller is responsible to copy it in a separate * {@link TimeStampedPVCoordinates} if it needs to keep the value for a while. *

* @param outputFrame frame in which coordinates should be defined * @return pvCoordinates in orbit definition frame */ public TimeStampedPVCoordinates getPVCoordinates(final Frame outputFrame) { return (absPva == null) ? orbit.getPVCoordinates(outputFrame) : absPva.getPVCoordinates(outputFrame); } /** Get the attitude. * @return the attitude. */ public Attitude getAttitude() { return attitude; } /** Gets the current mass. * @return the mass (kg) */ public double getMass() { return mass; } /** Replace the instance with a data transfer object for serialization. * @return data transfer object that will be serialized */ private Object writeReplace() { return isOrbitDefined() ? new DTOO(this) : new DTOA(this); } /** Internal class used only for serialization. */ private static class DTOO implements Serializable { /** Serializable UID. */ private static final long serialVersionUID = 20150916L; /** Orbit. */ private final Orbit orbit; /** Attitude and mass double values. */ private double[] d; /** Additional states. */ private final Map additional; /** Simple constructor. * @param state instance to serialize */ private DTOO(final SpacecraftState state) { this.orbit = state.orbit; this.additional = state.additional.isEmpty() ? null : state.additional; final Rotation rotation = state.attitude.getRotation(); final Vector3D spin = state.attitude.getSpin(); final Vector3D rotationAcceleration = state.attitude.getRotationAcceleration(); this.d = new double[] { rotation.getQ0(), rotation.getQ1(), rotation.getQ2(), rotation.getQ3(), spin.getX(), spin.getY(), spin.getZ(), rotationAcceleration.getX(), rotationAcceleration.getY(), rotationAcceleration.getZ(), state.mass }; } /** Replace the de-serialized data transfer object with a {@link SpacecraftState}. * @return replacement {@link SpacecraftState} */ private Object readResolve() { return new SpacecraftState(orbit, new Attitude(orbit.getFrame(), new TimeStampedAngularCoordinates(orbit.getDate(), new Rotation(d[0], d[1], d[2], d[3], false), new Vector3D(d[4], d[5], d[6]), new Vector3D(d[7], d[8], d[9]))), d[10], additional); } } /** Internal class used only for serialization. */ private static class DTOA implements Serializable { /** Serializable UID. */ private static final long serialVersionUID = 20150916L; /** Absolute position-velocity-acceleration. */ private final AbsolutePVCoordinates absPva; /** Attitude and mass double values. */ private double[] d; /** Additional states. */ private final Map additional; /** Simple constructor. * @param state instance to serialize */ private DTOA(final SpacecraftState state) { this.absPva = state.absPva; this.additional = state.additional.isEmpty() ? null : state.additional; final Rotation rotation = state.attitude.getRotation(); final Vector3D spin = state.attitude.getSpin(); final Vector3D rotationAcceleration = state.attitude.getRotationAcceleration(); this.d = new double[] { rotation.getQ0(), rotation.getQ1(), rotation.getQ2(), rotation.getQ3(), spin.getX(), spin.getY(), spin.getZ(), rotationAcceleration.getX(), rotationAcceleration.getY(), rotationAcceleration.getZ(), state.mass }; } /** Replace the deserialized data transfer object with a {@link SpacecraftState}. * @return replacement {@link SpacecraftState} */ private Object readResolve() { return new SpacecraftState(absPva, new Attitude(absPva.getFrame(), new TimeStampedAngularCoordinates(absPva.getDate(), new Rotation(d[0], d[1], d[2], d[3], false), new Vector3D(d[4], d[5], d[6]), new Vector3D(d[7], d[8], d[9]))), d[10], additional); } } @Override public String toString() { return "SpacecraftState{" + "orbit=" + orbit + ", attitude=" + attitude + ", mass=" + mass + ", additional=" + additional + '}'; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy