All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.orekit.attitudes.CelestialBodyPointed Maven / Gradle / Ivy

Go to download

OREKIT (ORbits Extrapolation KIT) is a low level space dynamics library. It provides basic elements (orbits, dates, attitude, frames ...) and various algorithms to handle them (conversions, analytical and numerical propagation, pointing ...).

There is a newer version: 12.2
Show newest version
/* Copyright 2002-2022 CS GROUP
 * Licensed to CS GROUP (CS) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * CS licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.orekit.attitudes;

import org.hipparchus.Field;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.geometry.euclidean.threed.FieldRotation;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Rotation;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.orekit.frames.FieldTransform;
import org.orekit.frames.Frame;
import org.orekit.frames.Transform;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.utils.FieldPVCoordinates;
import org.orekit.utils.FieldPVCoordinatesProvider;
import org.orekit.utils.PVCoordinates;
import org.orekit.utils.PVCoordinatesProvider;


/**
 * This class handles a celestial body pointed attitude provider.
 * 

The celestial body pointed law is defined by two main elements: *

    *
  • a celestial body towards which some satellite axis is exactly aimed
  • *
  • a phasing reference defining the rotation around the pointing axis
  • *
* *

* The celestial body implicitly defines two of the three degrees of freedom * and the phasing reference defines the remaining degree of freedom. This definition * can be represented as first aligning exactly the satellite pointing axis to * the current direction of the celestial body, and then to find the rotation * around this axis such that the satellite phasing axis is in the half-plane * defined by a cut line on the pointing axis and containing the celestial * phasing reference. *

*

* In order for this definition to work, the user must ensure that the phasing * reference is never aligned with the pointing reference. * Since the pointed body moves as the date changes, this should be ensured * regardless of the date. A simple way to do this for Sun, Moon or any planet * pointing is to choose a phasing reference far from the ecliptic plane. Using * Vector3D.PLUS_K, the equatorial pole, is perfect in these cases. *

*

Instances of this class are guaranteed to be immutable.

* @author Luc Maisonobe */ public class CelestialBodyPointed implements AttitudeProvider { /** Frame in which {@link #phasingCel} is defined. */ private final Frame celestialFrame; /** Celestial body to point at. */ private final PVCoordinatesProvider pointedBody; /** Phasing reference, in celestial frame. */ private final Vector3D phasingCel; /** Satellite axis aiming at the pointed body, in satellite frame. */ private final Vector3D pointingSat; /** Phasing reference, in satellite frame. */ private final Vector3D phasingSat; /** Creates new instance. * @param celestialFrame frame in which phasingCel is defined * @param pointedBody celestial body to point at * @param phasingCel phasing reference, in celestial frame * @param pointingSat satellite vector defining the pointing direction * @param phasingSat phasing reference, in satellite frame */ public CelestialBodyPointed(final Frame celestialFrame, final PVCoordinatesProvider pointedBody, final Vector3D phasingCel, final Vector3D pointingSat, final Vector3D phasingSat) { this.celestialFrame = celestialFrame; this.pointedBody = pointedBody; this.phasingCel = phasingCel; this.pointingSat = pointingSat; this.phasingSat = phasingSat; } /** {@inheritDoc} */ public Attitude getAttitude(final PVCoordinatesProvider pvProv, final AbsoluteDate date, final Frame frame) { final PVCoordinates satPV = pvProv.getPVCoordinates(date, celestialFrame); // compute celestial references at the specified date final PVCoordinates bodyPV = pointedBody.getPVCoordinates(date, celestialFrame); final PVCoordinates pointing = new PVCoordinates(satPV, bodyPV); final Vector3D pointingP = pointing.getPosition(); final double r2 = Vector3D.dotProduct(pointingP, pointingP); // evaluate instant rotation axis due to sat and body motion only (no phasing yet) final Vector3D rotAxisCel = new Vector3D(1 / r2, Vector3D.crossProduct(pointingP, pointing.getVelocity())); // fix instant rotation to take phasing constraint into account // (adding a rotation around pointing axis ensuring the motion of the phasing axis // is constrained in the pointing-phasing plane) final Vector3D v1 = Vector3D.crossProduct(rotAxisCel, phasingCel); final Vector3D v2 = Vector3D.crossProduct(pointingP, phasingCel); final double compensation = -Vector3D.dotProduct(v1, v2) / v2.getNormSq(); final Vector3D phasedRotAxisCel = new Vector3D(1.0, rotAxisCel, compensation, pointingP); // compute transform from celestial frame to satellite frame final Rotation celToSatRotation = new Rotation(pointingP, phasingCel, pointingSat, phasingSat); // build transform combining rotation and instant rotation axis Transform transform = new Transform(date, celToSatRotation, celToSatRotation.applyTo(phasedRotAxisCel)); if (frame != celestialFrame) { // prepend transform from specified frame to celestial frame transform = new Transform(date, frame.getTransformTo(celestialFrame, date), transform); } // build the attitude return new Attitude(date, frame, transform.getRotation(), transform.getRotationRate(), transform.getRotationAcceleration()); } /** {@inheritDoc} */ public > FieldAttitude getAttitude(final FieldPVCoordinatesProvider pvProv, final FieldAbsoluteDate date, final Frame frame) { final Field field = date.getField(); final FieldPVCoordinates satPV = pvProv.getPVCoordinates(date, celestialFrame); // compute celestial references at the specified date final FieldPVCoordinates bodyPV = new FieldPVCoordinates<>(field, pointedBody.getPVCoordinates(date.toAbsoluteDate(), celestialFrame)); final FieldPVCoordinates pointing = new FieldPVCoordinates<>(satPV, bodyPV); final FieldVector3D pointingP = pointing.getPosition(); final T r2 = FieldVector3D.dotProduct(pointingP, pointingP); // evaluate instant rotation axis due to sat and body motion only (no phasing yet) final FieldVector3D rotAxisCel = new FieldVector3D<>(r2.reciprocal(), FieldVector3D.crossProduct(pointingP, pointing.getVelocity())); // fix instant rotation to take phasing constraint into account // (adding a rotation around pointing axis ensuring the motion of the phasing axis // is constrained in the pointing-phasing plane) final FieldVector3D v1 = FieldVector3D.crossProduct(rotAxisCel, phasingCel); final FieldVector3D v2 = FieldVector3D.crossProduct(pointingP, phasingCel); final T compensation = FieldVector3D.dotProduct(v1, v2).negate().divide(v2.getNormSq()); final FieldVector3D phasedRotAxisCel = new FieldVector3D<>(field.getOne(), rotAxisCel, compensation, pointingP); // compute transform from celestial frame to satellite frame final FieldRotation celToSatRotation = new FieldRotation<>(pointingP, new FieldVector3D<>(field, phasingCel), new FieldVector3D<>(field, pointingSat), new FieldVector3D<>(field, phasingSat)); // build transform combining rotation and instant rotation axis FieldTransform transform = new FieldTransform<>(date, celToSatRotation, celToSatRotation.applyTo(phasedRotAxisCel)); if (frame != celestialFrame) { // prepend transform from specified frame to celestial frame transform = new FieldTransform<>(date, frame.getTransformTo(celestialFrame, date), transform); } // build the attitude return new FieldAttitude<>(date, frame, transform.getRotation(), transform.getRotationRate(), transform.getRotationAcceleration()); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy