All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.orekit.attitudes.LofOffsetPointing Maven / Gradle / Ivy

Go to download

OREKIT (ORbits Extrapolation KIT) is a low level space dynamics library. It provides basic elements (orbits, dates, attitude, frames ...) and various algorithms to handle them (conversions, analytical and numerical propagation, pointing ...).

There is a newer version: 12.2
Show newest version
/* Copyright 2002-2022 CS GROUP
 * Licensed to CS GROUP (CS) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * CS licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.orekit.attitudes;

import java.util.ArrayList;
import java.util.List;

import org.hipparchus.CalculusFieldElement;
import org.hipparchus.geometry.euclidean.threed.FieldLine;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Line;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.orekit.bodies.BodyShape;
import org.orekit.bodies.FieldGeodeticPoint;
import org.orekit.bodies.GeodeticPoint;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitMessages;
import org.orekit.frames.FieldTransform;
import org.orekit.frames.Frame;
import org.orekit.frames.StaticTransform;
import org.orekit.frames.Transform;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.utils.CartesianDerivativesFilter;
import org.orekit.utils.Constants;
import org.orekit.utils.FieldPVCoordinatesProvider;
import org.orekit.utils.PVCoordinatesProvider;
import org.orekit.utils.TimeStampedFieldPVCoordinates;
import org.orekit.utils.TimeStampedPVCoordinates;


/**
 * This class provides a default attitude provider.

 * 

* The attitude pointing law is defined by an attitude provider and * the satellite axis vector chosen for pointing. *

* @author Véronique Pommier-Maurussane */ public class LofOffsetPointing extends GroundPointing { /** Rotation from local orbital frame. */ private final AttitudeProvider attitudeLaw; /** Body shape. */ private final BodyShape shape; /** Chosen satellite axis for pointing, given in satellite frame. */ private final Vector3D satPointingVector; /** Creates new instance. * @param inertialFrame frame in which orbital velocities are computed * @param shape Body shape * @param attLaw Attitude law * @param satPointingVector satellite vector defining the pointing direction * @since 7.1 */ public LofOffsetPointing(final Frame inertialFrame, final BodyShape shape, final AttitudeProvider attLaw, final Vector3D satPointingVector) { super(inertialFrame, shape.getBodyFrame()); this.shape = shape; this.attitudeLaw = attLaw; this.satPointingVector = satPointingVector; } /** {@inheritDoc} */ @Override public Attitude getAttitude(final PVCoordinatesProvider pvProv, final AbsoluteDate date, final Frame frame) { return attitudeLaw.getAttitude(pvProv, date, frame); } /** {@inheritDoc} */ @Override public > FieldAttitude getAttitude(final FieldPVCoordinatesProvider pvProv, final FieldAbsoluteDate date, final Frame frame) { return attitudeLaw.getAttitude(pvProv, date, frame); } /** {@inheritDoc} */ public TimeStampedPVCoordinates getTargetPV(final PVCoordinatesProvider pvProv, final AbsoluteDate date, final Frame frame) { // sample intersection points in current date neighborhood final double h = 0.1; final List sample = new ArrayList<>(); Transform centralRefToBody = null; for (int i = -1; i < 2; ++i) { final AbsoluteDate shifted = date.shiftedBy(i * h); // transform from specified reference frame to spacecraft frame final StaticTransform refToSc = StaticTransform.compose( shifted, StaticTransform.of( shifted, pvProv.getPVCoordinates(shifted, frame).getPosition().negate()), StaticTransform.of( shifted, attitudeLaw.getAttitude(pvProv, shifted, frame).getRotation())); // transform from specified reference frame to body frame final StaticTransform refToBody; if (i == 0) { refToBody = centralRefToBody = frame.getTransformTo(shape.getBodyFrame(), shifted); } else { refToBody = frame.getStaticTransformTo(shape.getBodyFrame(), shifted); } sample.add(losIntersectionWithBody(StaticTransform.compose(shifted, refToSc.getInverse(), refToBody))); } // use interpolation to compute properly the time-derivatives final TimeStampedPVCoordinates targetBody = TimeStampedPVCoordinates.interpolate(date, CartesianDerivativesFilter.USE_P, sample); // convert back to caller specified frame return centralRefToBody.getInverse().transformPVCoordinates(targetBody); } /** {@inheritDoc} */ public > TimeStampedFieldPVCoordinates getTargetPV(final FieldPVCoordinatesProvider pvProv, final FieldAbsoluteDate date, final Frame frame) { // sample intersection points in current date neighborhood final double h = 0.1; final List> sample = new ArrayList<>(); FieldTransform centralRefToBody = null; for (int i = -1; i < 2; ++i) { final FieldAbsoluteDate shifted = date.shiftedBy(i * h); // transform from specified reference frame to spacecraft frame final FieldTransform refToSc = new FieldTransform<>(shifted, new FieldTransform<>(shifted, pvProv.getPVCoordinates(shifted, frame).negate()), new FieldTransform<>(shifted, attitudeLaw.getAttitude(pvProv, shifted, frame).getOrientation())); // transform from specified reference frame to body frame final FieldTransform refToBody = frame.getTransformTo(shape.getBodyFrame(), shifted); if (i == 0) { centralRefToBody = refToBody; } sample.add(losIntersectionWithBody(new FieldTransform<>(shifted, refToSc.getInverse(), refToBody))); } // use interpolation to compute properly the time-derivatives final TimeStampedFieldPVCoordinates targetBody = TimeStampedFieldPVCoordinates.interpolate(date, CartesianDerivativesFilter.USE_P, sample); // convert back to caller specified frame return centralRefToBody.getInverse().transformPVCoordinates(targetBody); } /** Compute line of sight intersection with body. * @param scToBody transform from spacecraft frame to body frame * @return intersection point in body frame (only the position is set!) */ private TimeStampedPVCoordinates losIntersectionWithBody(final StaticTransform scToBody) { // compute satellite pointing axis and position/velocity in body frame final Vector3D pointingBodyFrame = scToBody.transformVector(satPointingVector); final Vector3D pBodyFrame = scToBody.transformPosition(Vector3D.ZERO); // Line from satellite following pointing direction // we use arbitrarily the Earth radius as a scaling factor, it could be anything else final Line pointingLine = new Line(pBodyFrame, pBodyFrame.add(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, pointingBodyFrame), 1.0e-10); // Intersection with body shape final GeodeticPoint gpIntersection = shape.getIntersectionPoint(pointingLine, pBodyFrame, shape.getBodyFrame(), scToBody.getDate()); final Vector3D pIntersection = (gpIntersection == null) ? null : shape.transform(gpIntersection); // Check there is an intersection and it is not in the reverse pointing direction if (pIntersection == null || Vector3D.dotProduct(pIntersection.subtract(pBodyFrame), pointingBodyFrame) < 0) { throw new OrekitException(OrekitMessages.ATTITUDE_POINTING_LAW_DOES_NOT_POINT_TO_GROUND); } return new TimeStampedPVCoordinates(scToBody.getDate(), pIntersection, Vector3D.ZERO, Vector3D.ZERO); } /** Compute line of sight intersection with body. * @param scToBody transform from spacecraft frame to body frame * @param type of the field elements * @return intersection point in body frame (only the position is set!) */ private > TimeStampedFieldPVCoordinates losIntersectionWithBody(final FieldTransform scToBody) { // compute satellite pointing axis and position/velocity in body frame final FieldVector3D pointingBodyFrame = scToBody.transformVector(satPointingVector); final FieldVector3D pBodyFrame = scToBody.transformPosition(Vector3D.ZERO); // Line from satellite following pointing direction // we use arbitrarily the Earth radius as a scaling factor, it could be anything else final FieldLine pointingLine = new FieldLine<>(pBodyFrame, pBodyFrame.add(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, pointingBodyFrame), 1.0e-10); // Intersection with body shape final FieldGeodeticPoint gpIntersection = shape.getIntersectionPoint(pointingLine, pBodyFrame, shape.getBodyFrame(), scToBody.getFieldDate()); final FieldVector3D pIntersection = (gpIntersection == null) ? null : shape.transform(gpIntersection); // Check there is an intersection and it is not in the reverse pointing direction if (pIntersection == null || FieldVector3D.dotProduct(pIntersection.subtract(pBodyFrame), pointingBodyFrame).getReal() < 0) { throw new OrekitException(OrekitMessages.ATTITUDE_POINTING_LAW_DOES_NOT_POINT_TO_GROUND); } final FieldVector3D zero = FieldVector3D.getZero(scToBody.getFieldDate().getField()); return new TimeStampedFieldPVCoordinates<>(scToBody.getDate(), pIntersection, zero, zero); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy