org.orekit.data.FundamentalNutationArguments Maven / Gradle / Ivy
Show all versions of orekit Show documentation
/* Copyright 2002-2022 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.data;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.Serializable;
import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.exception.DummyLocalizable;
import org.hipparchus.util.FastMath;
import org.orekit.annotation.DefaultDataContext;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitInternalError;
import org.orekit.errors.OrekitMessages;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.time.TimeScalarFunction;
import org.orekit.time.TimeScale;
import org.orekit.time.TimeScales;
import org.orekit.utils.Constants;
import org.orekit.utils.IERSConventions;
/**
* Class computing the fundamental arguments for nutation and tides.
*
* The fundamental arguments are split in two sets:
*
*
* - the Delaunay arguments for Moon and Sun effects
* - the planetary arguments for other planets
*
*
* @author Luc Maisonobe
* @see SeriesTerm
* @see PoissonSeries
* @see BodiesElements
*/
public class FundamentalNutationArguments implements Serializable {
/** Serializable UID. */
private static final long serialVersionUID = 20131209L;
/** IERS conventions to use. */
private final IERSConventions conventions;
/** Time scale for GMST computation. */
private final TimeScale timeScale;
/** Function computing Greenwich Mean Sidereal Time. */
private final transient TimeScalarFunction gmstFunction;
/** Function computing Greenwich Mean Sidereal Time rate. */
private final transient TimeScalarFunction gmstRateFunction;
// luni-solar Delaunay arguments
/** Coefficients for mean anomaly of the Moon. */
private final double[] lCoefficients;
/** Coefficients for mean anomaly of the Sun. */
private final double[] lPrimeCoefficients;
/** Coefficients for L - Ω where L is the mean longitude of the Moon. */
private final double[] fCoefficients;
/** Coefficients for mean elongation of the Moon from the Sun. */
private final double[] dCoefficients;
/** Coefficients for mean longitude of the ascending node of the Moon. */
private final double[] omegaCoefficients;
// planetary nutation arguments
/** Coefficients for mean Mercury longitude. */
private final double[] lMeCoefficients;
/** Coefficients for mean Venus longitude. */
private final double[] lVeCoefficients;
/** Coefficients for mean Earth longitude. */
private final double[] lECoefficients;
/** Coefficients for mean Mars longitude. */
private final double[] lMaCoefficients;
/** Coefficients for mean Jupiter longitude. */
private final double[] lJCoefficients;
/** Coefficients for mean Saturn longitude. */
private final double[] lSaCoefficients;
/** Coefficients for mean Uranus longitude. */
private final double[] lUCoefficients;
/** Coefficients for mean Neptune longitude. */
private final double[] lNeCoefficients;
/** Coefficients for general accumulated precession. */
private final double[] paCoefficients;
/** Set of time scales to use in computations. */
private final transient TimeScales timeScales;
/** Build a model of fundamental arguments from an IERS table file.
*
* This method uses the {@link DataContext#getDefault() default data context}.
*
* @param conventions IERS conventions to use
* @param timeScale time scale for GMST computation
* (may be null if tide parameter γ = GMST + π is not needed)
* @param stream stream containing the IERS table
* @param name name of the resource file (for error messages only)
* @see #FundamentalNutationArguments(IERSConventions, TimeScale, List, TimeScales)
* @see #FundamentalNutationArguments(IERSConventions, TimeScale, InputStream, String, TimeScales)
*/
@DefaultDataContext
public FundamentalNutationArguments(final IERSConventions conventions,
final TimeScale timeScale,
final InputStream stream, final String name) {
this(conventions, timeScale, stream, name,
DataContext.getDefault().getTimeScales());
}
/**
* Build a model of fundamental arguments from an IERS table file.
*
* @param conventions IERS conventions to use
* @param timeScale time scale for GMST computation (may be null if tide parameter γ
* = GMST + π is not needed)
* @param stream stream containing the IERS table
* @param name name of the resource file (for error messages only)
* @param timeScales TAI time scale
* @see #FundamentalNutationArguments(IERSConventions, TimeScale, List, TimeScales)
* @since 10.1
*/
public FundamentalNutationArguments(final IERSConventions conventions,
final TimeScale timeScale,
final InputStream stream,
final String name,
final TimeScales timeScales) {
this(conventions, timeScale, parseCoefficients(stream, name), timeScales);
}
/** Build a model of fundamental arguments from an IERS table file.
*
*
This method uses the {@link DataContext#getDefault() default data context}.
*
* @param conventions IERS conventions to use
* @param timeScale time scale for GMST computation
* (may be null if tide parameter γ = GMST + π is not needed)
* @param coefficients list of coefficients arrays (all 14 arrays must be provided,
* the 5 Delaunay first and the 9 planetary afterwards)
* @since 6.1
* @see #FundamentalNutationArguments(IERSConventions, TimeScale, List, TimeScales)
*/
@DefaultDataContext
public FundamentalNutationArguments(final IERSConventions conventions, final TimeScale timeScale,
final List coefficients) {
this(conventions, timeScale, coefficients,
DataContext.getDefault().getTimeScales());
}
/** Build a model of fundamental arguments from an IERS table file.
* @param conventions IERS conventions to use
* @param timeScale time scale for GMST computation
* (may be null if tide parameter γ = GMST + π is not needed)
* @param coefficients list of coefficients arrays (all 14 arrays must be provided,
* the 5 Delaunay first and the 9 planetary afterwards)
* @param timeScales used in the computation.
* @since 10.1
*/
public FundamentalNutationArguments(final IERSConventions conventions,
final TimeScale timeScale,
final List coefficients,
final TimeScales timeScales) {
this.conventions = conventions;
this.timeScale = timeScale;
this.timeScales = timeScales;
this.gmstFunction = (timeScale == null) ? null :
conventions.getGMSTFunction(timeScale, timeScales);
this.gmstRateFunction = (timeScale == null) ? null :
conventions.getGMSTRateFunction(timeScale, timeScales);
this.lCoefficients = coefficients.get( 0);
this.lPrimeCoefficients = coefficients.get( 1);
this.fCoefficients = coefficients.get( 2);
this.dCoefficients = coefficients.get( 3);
this.omegaCoefficients = coefficients.get( 4);
this.lMeCoefficients = coefficients.get( 5);
this.lVeCoefficients = coefficients.get( 6);
this.lECoefficients = coefficients.get( 7);
this.lMaCoefficients = coefficients.get( 8);
this.lJCoefficients = coefficients.get( 9);
this.lSaCoefficients = coefficients.get(10);
this.lUCoefficients = coefficients.get(11);
this.lNeCoefficients = coefficients.get(12);
this.paCoefficients = coefficients.get(13);
}
/** Parse coefficients.
* @param stream stream containing the IERS table
* @param name name of the resource file (for error messages only)
* @return list of coefficients arrays
*/
private static List parseCoefficients(final InputStream stream, final String name) {
if (stream == null) {
throw new OrekitException(OrekitMessages.UNABLE_TO_FIND_FILE, name);
}
// setup the reader
try (BufferedReader reader = new BufferedReader(new InputStreamReader(stream, StandardCharsets.UTF_8))) {
final DefinitionParser definitionParser = new DefinitionParser();
int lineNumber = 0;
// look for the reference date and the 14 polynomials
final int n = FundamentalName.values().length;
final Map polynomials = new HashMap(n);
for (String line = reader.readLine(); line != null; line = reader.readLine()) {
lineNumber++;
if (definitionParser.parseDefinition(line, lineNumber, name)) {
polynomials.put(definitionParser.getParsedName(),
definitionParser.getParsedPolynomial());
}
}
final List coefficients = new ArrayList(n);
coefficients.add(getCoefficients(FundamentalName.L, polynomials, name));
coefficients.add(getCoefficients(FundamentalName.L_PRIME, polynomials, name));
coefficients.add(getCoefficients(FundamentalName.F, polynomials, name));
coefficients.add(getCoefficients(FundamentalName.D, polynomials, name));
coefficients.add(getCoefficients(FundamentalName.OMEGA, polynomials, name));
if (polynomials.containsKey(FundamentalName.L_ME)) {
// IERS conventions 2003 and later provide planetary nutation arguments
coefficients.add(getCoefficients(FundamentalName.L_ME, polynomials, name));
coefficients.add(getCoefficients(FundamentalName.L_VE, polynomials, name));
coefficients.add(getCoefficients(FundamentalName.L_E, polynomials, name));
coefficients.add(getCoefficients(FundamentalName.L_MA, polynomials, name));
coefficients.add(getCoefficients(FundamentalName.L_J, polynomials, name));
coefficients.add(getCoefficients(FundamentalName.L_SA, polynomials, name));
coefficients.add(getCoefficients(FundamentalName.L_U, polynomials, name));
coefficients.add(getCoefficients(FundamentalName.L_NE, polynomials, name));
coefficients.add(getCoefficients(FundamentalName.PA, polynomials, name));
} else {
// IERS conventions 1996 and earlier don't provide planetary nutation arguments
final double[] zero = new double[] {
0.0
};
while (coefficients.size() < n) {
coefficients.add(zero);
}
}
return coefficients;
} catch (IOException ioe) {
throw new OrekitException(ioe, new DummyLocalizable(ioe.getMessage()));
}
}
/** Get the coefficients for a fundamental argument.
* @param argument fundamental argument
* @param polynomials map of the polynomials
* @param fileName name of the file from which the coefficients have been read
* @return polynomials coefficients (ordered from high degrees to low degrees)
*/
private static double[] getCoefficients(final FundamentalName argument,
final Map polynomials,
final String fileName) {
if (!polynomials.containsKey(argument)) {
throw new OrekitException(OrekitMessages.NOT_A_SUPPORTED_IERS_DATA_FILE, fileName);
}
return polynomials.get(argument);
}
/** Evaluate a polynomial.
* @param tc offset in Julian centuries
* @param coefficients polynomial coefficients (ordered from low degrees to high degrees)
* @return value of the polynomial
*/
private double value(final double tc, final double[] coefficients) {
double value = 0;
for (int i = coefficients.length - 1; i >= 0; --i) {
value = coefficients[i] + tc * value;
}
return value;
}
/** Evaluate a polynomial time derivative.
* @param tc offset in Julian centuries
* @param coefficients polynomial coefficients (ordered from low degrees to high degrees)
* @return time derivative of the polynomial
*/
private double derivative(final double tc, final double[] coefficients) {
double derivative = 0;
for (int i = coefficients.length - 1; i > 0; --i) {
derivative = i * coefficients[i] + tc * derivative;
}
return derivative / Constants.JULIAN_CENTURY;
}
/** Evaluate a polynomial.
* @param tc offset in Julian centuries
* @param type of the field elements
* @param coefficients polynomial coefficients (ordered from low degrees to high degrees)
* @return value of the polynomial
*/
private > T value(final T tc, final double[] coefficients) {
T value = tc.getField().getZero();
for (int i = coefficients.length - 1; i >= 0; --i) {
value = tc.multiply(value).add(coefficients[i]);
}
return value;
}
/** Evaluate a polynomial time derivative.
* @param tc offset in Julian centuries
* @param type of the field elements
* @param coefficients polynomial coefficients (ordered from low degrees to high degrees)
* @return time derivative of the polynomial
*/
private > T derivative(final T tc, final double[] coefficients) {
T derivative = tc.getField().getZero();
for (int i = coefficients.length - 1; i > 0; --i) {
derivative = tc.multiply(derivative).add(i * coefficients[i]);
}
return derivative.divide(Constants.JULIAN_CENTURY);
}
/** Evaluate all fundamental arguments for the current date (Delaunay plus planetary).
* @param date current date
* @return all fundamental arguments for the current date (Delaunay plus planetary)
*/
public BodiesElements evaluateAll(final AbsoluteDate date) {
final double tc = conventions.evaluateTC(date, timeScales);
final double gamma = gmstFunction == null ?
Double.NaN : gmstFunction.value(date) + FastMath.PI;
final double gammaDot = gmstRateFunction == null ?
Double.NaN : gmstRateFunction.value(date);
return new BodiesElements(date, tc, gamma, gammaDot,
value(tc, lCoefficients), // mean anomaly of the Moon
derivative(tc, lCoefficients), // mean anomaly of the Moon time derivative
value(tc, lPrimeCoefficients), // mean anomaly of the Sun
derivative(tc, lPrimeCoefficients), // mean anomaly of the Sun time derivative
value(tc, fCoefficients), // L - Ω where L is the mean longitude of the Moon
derivative(tc, fCoefficients), // L - Ω where L is the mean longitude of the Moon time derivative
value(tc, dCoefficients), // mean elongation of the Moon from the Sun
derivative(tc, dCoefficients), // mean elongation of the Moon from the Sun time derivative
value(tc, omegaCoefficients), // mean longitude of the ascending node of the Moon
derivative(tc, omegaCoefficients), // mean longitude of the ascending node of the Moon time derivative
value(tc, lMeCoefficients), // mean Mercury longitude
derivative(tc, lMeCoefficients), // mean Mercury longitude time derivative
value(tc, lVeCoefficients), // mean Venus longitude
derivative(tc, lVeCoefficients), // mean Venus longitude time derivative
value(tc, lECoefficients), // mean Earth longitude
derivative(tc, lECoefficients), // mean Earth longitude time derivative
value(tc, lMaCoefficients), // mean Mars longitude
derivative(tc, lMaCoefficients), // mean Mars longitude time derivative
value(tc, lJCoefficients), // mean Jupiter longitude
derivative(tc, lJCoefficients), // mean Jupiter longitude time derivative
value(tc, lSaCoefficients), // mean Saturn longitude
derivative(tc, lSaCoefficients), // mean Saturn longitude time derivative
value(tc, lUCoefficients), // mean Uranus longitude
derivative(tc, lUCoefficients), // mean Uranus longitude time derivative
value(tc, lNeCoefficients), // mean Neptune longitude
derivative(tc, lNeCoefficients), // mean Neptune longitude time derivative
value(tc, paCoefficients), // general accumulated precession in longitude
derivative(tc, paCoefficients)); // general accumulated precession in longitude time derivative
}
/** Evaluate all fundamental arguments for the current date (Delaunay plus planetary).
* @param date current date
* @param type of the field elements
* @return all fundamental arguments for the current date (Delaunay plus planetary)
*/
public > FieldBodiesElements evaluateAll(final FieldAbsoluteDate date) {
final T tc = conventions.evaluateTC(date, timeScales);
final T gamma = gmstFunction == null ?
tc.getField().getZero().add(Double.NaN) : gmstFunction.value(date).add(tc.getPi());
final T gammaDot = gmstRateFunction == null ?
tc.getField().getZero().add(Double.NaN) : gmstRateFunction.value(date);
return new FieldBodiesElements<>(date, tc, gamma, gammaDot,
value(tc, lCoefficients), // mean anomaly of the Moon
derivative(tc, lCoefficients), // mean anomaly of the Moon time derivative
value(tc, lPrimeCoefficients), // mean anomaly of the Sun
derivative(tc, lPrimeCoefficients), // mean anomaly of the Sun time derivative
value(tc, fCoefficients), // L - Ω where L is the mean longitude of the Moon
derivative(tc, fCoefficients), // L - Ω where L is the mean longitude of the Moon time derivative
value(tc, dCoefficients), // mean elongation of the Moon from the Sun
derivative(tc, dCoefficients), // mean elongation of the Moon from the Sun time derivative
value(tc, omegaCoefficients), // mean longitude of the ascending node of the Moon
derivative(tc, omegaCoefficients), // mean longitude of the ascending node of the Moon time derivative
value(tc, lMeCoefficients), // mean Mercury longitude
derivative(tc, lMeCoefficients), // mean Mercury longitude time derivative
value(tc, lVeCoefficients), // mean Venus longitude
derivative(tc, lVeCoefficients), // mean Venus longitude time derivative
value(tc, lECoefficients), // mean Earth longitude
derivative(tc, lECoefficients), // mean Earth longitude time derivative
value(tc, lMaCoefficients), // mean Mars longitude
derivative(tc, lMaCoefficients), // mean Mars longitude time derivative
value(tc, lJCoefficients), // mean Jupiter longitude
derivative(tc, lJCoefficients), // mean Jupiter longitude time derivative
value(tc, lSaCoefficients), // mean Saturn longitude
derivative(tc, lSaCoefficients), // mean Saturn longitude time derivative
value(tc, lUCoefficients), // mean Uranus longitude
derivative(tc, lUCoefficients), // mean Uranus longitude time derivative
value(tc, lNeCoefficients), // mean Neptune longitude
derivative(tc, lNeCoefficients), // mean Neptune longitude time derivative
value(tc, paCoefficients), // general accumulated precession in longitude
derivative(tc, paCoefficients)); // general accumulated precession in longitude time derivative
}
/** Replace the instance with a data transfer object for serialization.
*
* This intermediate class serializes only the frame key.
*
* @return data transfer object that will be serialized
*/
@DefaultDataContext
private Object writeReplace() {
return new DataTransferObject(conventions, timeScale,
Arrays.asList(lCoefficients, lPrimeCoefficients, fCoefficients,
dCoefficients, omegaCoefficients,
lMeCoefficients, lVeCoefficients, lECoefficients,
lMaCoefficients, lJCoefficients, lSaCoefficients,
lUCoefficients, lNeCoefficients, paCoefficients));
}
/** Internal class used only for serialization. */
@DefaultDataContext
private static class DataTransferObject implements Serializable {
/** Serializable UID. */
private static final long serialVersionUID = 20131209L;
/** IERS conventions to use. */
private final IERSConventions conventions;
/** Time scale for GMST computation. */
private final TimeScale timeScale;
/** All coefficients. */
private final List coefficients;
/** Simple constructor.
* @param conventions IERS conventions to use
* @param timeScale time scale for GMST computation
* @param coefficients all coefficients
*/
DataTransferObject(final IERSConventions conventions, final TimeScale timeScale,
final List coefficients) {
this.conventions = conventions;
this.timeScale = timeScale;
this.coefficients = coefficients;
}
/** Replace the deserialized data transfer object with a {@link TIRFProvider}.
* @return replacement {@link TIRFProvider}
*/
private Object readResolve() {
try {
// retrieve a managed frame
return new FundamentalNutationArguments(conventions, timeScale, coefficients);
} catch (OrekitException oe) {
throw new OrekitInternalError(oe);
}
}
}
/** Enumerate for the fundamental names. */
private enum FundamentalName {
/** Constant for Mean anomaly of the Moon. */
L() {
/** {@inheritDoc} */
public String getArgumentName() {
return "l";
}
},
/** Constant for Mean anomaly of the Sun. */
L_PRIME() {
/** {@inheritDoc} */
public String getArgumentName() {
return "l'";
}
},
/** Constant for L - Ω where L is the mean longitude of the Moon. */
F() {
/** {@inheritDoc} */
public String getArgumentName() {
return "F";
}
},
/** Constant for mean elongation of the Moon from the Sun. */
D() {
/** {@inheritDoc} */
public String getArgumentName() {
return "D";
}
},
/** Constant for longitude of the ascending node of the Moon. */
OMEGA() {
/** {@inheritDoc} */
public String getArgumentName() {
return "\u03a9";
}
},
/** Constant for mean Mercury longitude. */
L_ME() {
/** {@inheritDoc} */
public String getArgumentName() {
return "LMe";
}
},
/** Constant for mean Venus longitude. */
L_VE() {
/** {@inheritDoc} */
public String getArgumentName() {
return "LVe";
}
},
/** Constant for mean Earth longitude. */
L_E() {
/** {@inheritDoc} */
public String getArgumentName() {
return "LE";
}
},
/** Constant for mean Mars longitude. */
L_MA() {
/** {@inheritDoc} */
public String getArgumentName() {
return "LMa";
}
},
/** Constant for mean Jupiter longitude. */
L_J() {
/** {@inheritDoc} */
public String getArgumentName() {
return "LJ";
}
},
/** Constant for mean Saturn longitude. */
L_SA() {
/** {@inheritDoc} */
public String getArgumentName() {
return "LSa";
}
},
/** Constant for mean Uranus longitude. */
L_U() {
/** {@inheritDoc} */
public String getArgumentName() {
return "LU";
}
},
/** Constant for mean Neptune longitude. */
L_NE() {
/** {@inheritDoc} */
public String getArgumentName() {
return "LNe";
}
},
/** Constant for general accumulated precession in longitude. */
PA() {
/** {@inheritDoc} */
public String getArgumentName() {
return "pA";
}
};
/** Get the fundamental name.
* @return fundamental name
*/
public abstract String getArgumentName();
}
/** Local parser for argument definition lines. */
private static class DefinitionParser {
/** Regular expression pattern for definitions. */
private final Pattern pattern;
/** Parser for polynomials. */
private PolynomialParser polynomialParser;
/** Last parsed fundamental name. */
private FundamentalName parsedName;
/** Last parsed polynomial. */
private double[] parsedPolynomial;
/** Simple constructor. */
DefinitionParser() {
// the luni-solar Delaunay arguments polynomial parts should read something like:
// F5 ≡ Ω = 125.04455501° − 6962890.5431″t + 7.4722″t² + 0.007702″t³ − 0.00005939″t⁴
// whereas the planetary arguments polynomial parts should read something like:
// F14 ≡ pA = 0.02438175 × t + 0.00000538691 × t²
final String unicodeIdenticalTo = "\u2261";
// pattern for the global line
final StringBuilder builder = new StringBuilder();
for (final FundamentalName fn : FundamentalName.values()) {
if (builder.length() > 0) {
builder.append('|');
}
builder.append(fn.getArgumentName());
}
final String fundamentalName = "\\p{Space}*((?:" + builder.toString() + ")+)";
pattern = Pattern.compile("\\p{Space}*F\\p{Digit}+\\p{Space}*" + unicodeIdenticalTo +
fundamentalName + "\\p{Space}*=\\p{Space}*(.*)");
polynomialParser = new PolynomialParser('t', PolynomialParser.Unit.NO_UNITS);
}
/** Parse a definition line.
* @param line line to parse
* @param lineNumber line number
* @param fileName name of the file
* @return true if a definition has been parsed
*/
public boolean parseDefinition(final String line, final int lineNumber, final String fileName) {
parsedName = null;
parsedPolynomial = null;
final Matcher matcher = pattern.matcher(line);
if (matcher.matches()) {
for (FundamentalName fn : FundamentalName.values()) {
if (fn.getArgumentName().equals(matcher.group(1))) {
parsedName = fn;
}
}
// parse the polynomial
parsedPolynomial = polynomialParser.parse(matcher.group(2));
return true;
} else {
return false;
}
}
/** Get the last parsed fundamental name.
* @return last parsed fundamental name
*/
public FundamentalName getParsedName() {
return parsedName;
}
/** Get the last parsed polynomial.
* @return last parsed polynomial
*/
public double[] getParsedPolynomial() {
return parsedPolynomial.clone();
}
}
}