All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.orekit.data.TideTerm Maven / Gradle / Ivy

Go to download

OREKIT (ORbits Extrapolation KIT) is a low level space dynamics library. It provides basic elements (orbits, dates, attitude, frames ...) and various algorithms to handle them (conversions, analytical and numerical propagation, pointing ...).

There is a newer version: 12.2
Show newest version
/* Copyright 2002-2022 CS GROUP
 * Licensed to CS GROUP (CS) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * CS licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.orekit.data;

import org.hipparchus.CalculusFieldElement;

/** Class for tide terms.
 * 

* BEWARE! For consistency with all the other Poisson series terms, * the elements in γ, l, l', F, D and Ω are ADDED together to compute * the argument of the term. In classical tides series, the computed * argument is cGamma * γ - (cL * l + cLPrime * l' + cF * F + cD * D * + cOmega * Ω). So at parsing time, the signs of cL, cLPrime, cF, * cD and cOmega must already have been reversed so the addition * performed here will work. This is done automatically when the * parser has been configured with a call to {@link * PoissonSeriesParser#withDoodson(int, int)} as the relationship * between the Doodson arguments and the traditional Delaunay * arguments ensures the proper sign is known. *

* @author Luc Maisonobe */ class TideTerm extends SeriesTerm { /** Coefficient for γ = GMST + π tide parameter. */ private final int cGamma; /** Coefficient for mean anomaly of the Moon. */ private final int cL; /** Coefficient for mean anomaly of the Sun. */ private final int cLPrime; /** Coefficient for L - Ω where L is the mean longitude of the Moon. */ private final int cF; /** Coefficient for mean elongation of the Moon from the Sun. */ private final int cD; /** Coefficient for mean longitude of the ascending node of the Moon. */ private final int cOmega; /** Build a tide term for nutation series. * @param cGamma coefficient for γ = GMST + π tide parameter * @param cL coefficient for mean anomaly of the Moon * @param cLPrime coefficient for mean anomaly of the Sun * @param cF coefficient for L - Ω where L is the mean longitude of the Moon * @param cD coefficient for mean elongation of the Moon from the Sun * @param cOmega coefficient for mean longitude of the ascending node of the Moon */ TideTerm(final int cGamma, final int cL, final int cLPrime, final int cF, final int cD, final int cOmega) { this.cGamma = cGamma; this.cL = cL; this.cLPrime = cLPrime; this.cF = cF; this.cD = cD; this.cOmega = cOmega; } /** {@inheritDoc} */ protected double argument(final BodiesElements elements) { return cGamma * elements.getGamma() + cL * elements.getL() + cLPrime * elements.getLPrime() + cF * elements.getF() + cD * elements.getD() + cOmega * elements.getOmega(); } /** {@inheritDoc} */ protected double argumentDerivative(final BodiesElements elements) { return cGamma * elements.getGammaDot() + cL * elements.getLDot() + cLPrime * elements.getLPrimeDot() + cF * elements.getFDot() + cD * elements.getDDot() + cOmega * elements.getOmegaDot(); } /** {@inheritDoc} */ protected > T argument(final FieldBodiesElements elements) { return elements.getGamma().multiply(cGamma). add(elements.getL().multiply(cL)). add(elements.getLPrime().multiply(cLPrime)). add(elements.getF().multiply(cF)). add(elements.getD().multiply(cD)). add(elements.getOmega().multiply(cOmega)); } /** {@inheritDoc} */ protected > T argumentDerivative(final FieldBodiesElements elements) { return elements.getGammaDot().multiply(cGamma). add(elements.getLDot().multiply(cL)). add(elements.getLPrimeDot().multiply(cLPrime)). add(elements.getFDot().multiply(cF)). add(elements.getDDot().multiply(cD)). add(elements.getOmegaDot().multiply(cOmega)); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy