org.orekit.data.TideTerm Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of orekit Show documentation
Show all versions of orekit Show documentation
OREKIT (ORbits Extrapolation KIT) is a low level space dynamics library.
It provides basic elements (orbits, dates, attitude, frames ...) and
various algorithms to handle them (conversions, analytical and numerical
propagation, pointing ...).
/* Copyright 2002-2022 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.data;
import org.hipparchus.CalculusFieldElement;
/** Class for tide terms.
*
* BEWARE! For consistency with all the other Poisson series terms,
* the elements in γ, l, l', F, D and Ω are ADDED together to compute
* the argument of the term. In classical tides series, the computed
* argument is cGamma * γ - (cL * l + cLPrime * l' + cF * F + cD * D
* + cOmega * Ω). So at parsing time, the signs of cL, cLPrime, cF,
* cD and cOmega must already have been reversed so the addition
* performed here will work. This is done automatically when the
* parser has been configured with a call to {@link
* PoissonSeriesParser#withDoodson(int, int)} as the relationship
* between the Doodson arguments and the traditional Delaunay
* arguments ensures the proper sign is known.
*
* @author Luc Maisonobe
*/
class TideTerm extends SeriesTerm {
/** Coefficient for γ = GMST + π tide parameter. */
private final int cGamma;
/** Coefficient for mean anomaly of the Moon. */
private final int cL;
/** Coefficient for mean anomaly of the Sun. */
private final int cLPrime;
/** Coefficient for L - Ω where L is the mean longitude of the Moon. */
private final int cF;
/** Coefficient for mean elongation of the Moon from the Sun. */
private final int cD;
/** Coefficient for mean longitude of the ascending node of the Moon. */
private final int cOmega;
/** Build a tide term for nutation series.
* @param cGamma coefficient for γ = GMST + π tide parameter
* @param cL coefficient for mean anomaly of the Moon
* @param cLPrime coefficient for mean anomaly of the Sun
* @param cF coefficient for L - Ω where L is the mean longitude of the Moon
* @param cD coefficient for mean elongation of the Moon from the Sun
* @param cOmega coefficient for mean longitude of the ascending node of the Moon
*/
TideTerm(final int cGamma,
final int cL, final int cLPrime, final int cF, final int cD, final int cOmega) {
this.cGamma = cGamma;
this.cL = cL;
this.cLPrime = cLPrime;
this.cF = cF;
this.cD = cD;
this.cOmega = cOmega;
}
/** {@inheritDoc} */
protected double argument(final BodiesElements elements) {
return cGamma * elements.getGamma() +
cL * elements.getL() + cLPrime * elements.getLPrime() + cF * elements.getF() +
cD * elements.getD() + cOmega * elements.getOmega();
}
/** {@inheritDoc} */
protected double argumentDerivative(final BodiesElements elements) {
return cGamma * elements.getGammaDot() +
cL * elements.getLDot() + cLPrime * elements.getLPrimeDot() + cF * elements.getFDot() +
cD * elements.getDDot() + cOmega * elements.getOmegaDot();
}
/** {@inheritDoc} */
protected > T argument(final FieldBodiesElements elements) {
return elements.getGamma().multiply(cGamma).
add(elements.getL().multiply(cL)).
add(elements.getLPrime().multiply(cLPrime)).
add(elements.getF().multiply(cF)).
add(elements.getD().multiply(cD)).
add(elements.getOmega().multiply(cOmega));
}
/** {@inheritDoc} */
protected > T argumentDerivative(final FieldBodiesElements elements) {
return elements.getGammaDot().multiply(cGamma).
add(elements.getLDot().multiply(cL)).
add(elements.getLPrimeDot().multiply(cLPrime)).
add(elements.getFDot().multiply(cF)).
add(elements.getDDot().multiply(cD)).
add(elements.getOmegaDot().multiply(cOmega));
}
}