All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.orekit.time.FieldAbsoluteDate Maven / Gradle / Ivy

Go to download

OREKIT (ORbits Extrapolation KIT) is a low level space dynamics library. It provides basic elements (orbits, dates, attitude, frames ...) and various algorithms to handle them (conversions, analytical and numerical propagation, pointing ...).

There is a newer version: 12.2
Show newest version
/* Copyright 2002-2022 CS GROUP
 * Licensed to CS GROUP (CS) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * CS licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.orekit.time;

import java.util.Date;
import java.util.TimeZone;

import org.hipparchus.Field;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathUtils;
import org.hipparchus.util.MathUtils.FieldSumAndResidual;
import org.hipparchus.util.MathUtils.SumAndResidual;
import org.orekit.annotation.DefaultDataContext;
import org.orekit.data.DataContext;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitMessages;
import org.orekit.utils.Constants;

/** This class represents a specific instant in time.

 * 

Instances of this class are considered to be absolute in the sense * that each one represent the occurrence of some event and can be compared * to other instances or located in any {@link TimeScale time scale}. In * other words the different locations of an event with respect to two different * time scales (say {@link TAIScale TAI} and {@link UTCScale UTC} for example) are * simply different perspective related to a single object. Only one * FieldAbsoluteDate<T> instance is needed, both representations being available * from this single instance by specifying the time scales as parameter when calling * the ad-hoc methods.

* *

Since an instance is not bound to a specific time-scale, all methods related * to the location of the date within some time scale require to provide the time * scale as an argument. It is therefore possible to define a date in one time scale * and to use it in another one. An example of such use is to read a date from a file * in UTC and write it in another file in TAI. This can be done as follows:

*
 *   DateTimeComponents utcComponents = readNextDate();
 *   FieldAbsoluteDate<T> date = new FieldAbsoluteDate<>(utcComponents, TimeScalesFactory.getUTC());
 *   writeNextDate(date.getComponents(TimeScalesFactory.getTAI()));
 * 
* *

Two complementary views are available:

*
    *
  • location view (mainly for input/output or conversions)

    *

    locations represent the coordinate of one event with respect to a * {@link TimeScale time scale}. The related methods are {@link * #FieldAbsoluteDate(Field, DateComponents, TimeComponents, TimeScale)}, {@link * #FieldAbsoluteDate(Field, int, int, int, int, int, double, TimeScale)}, {@link * #FieldAbsoluteDate(Field, int, int, int, TimeScale)}, {@link #FieldAbsoluteDate(Field, * Date, TimeScale)}, {@link #createGPSDate(int, CalculusFieldElement)}, {@link * #parseCCSDSCalendarSegmentedTimeCode(byte, byte[])}, {@link #toDate(TimeScale)}, * {@link #toString(TimeScale) toString(timeScale)}, {@link #toString()}, * and {@link #timeScalesOffset}.

    *
  • *
  • offset view (mainly for physical computation)

    *

    offsets represent either the flow of time between two events * (two instances of the class) or durations. They are counted in seconds, * are continuous and could be measured using only a virtually perfect stopwatch. * The related methods are {@link #FieldAbsoluteDate(FieldAbsoluteDate, double)}, * {@link #parseCCSDSUnsegmentedTimeCode(Field, byte, byte, byte[], FieldAbsoluteDate)}, * {@link #parseCCSDSDaySegmentedTimeCode(Field, byte, byte[], DateComponents)}, * {@link #durationFrom(FieldAbsoluteDate)}, {@link #compareTo(FieldAbsoluteDate)}, {@link #equals(Object)} * and {@link #hashCode()}.

    *
  • *
*

* A few reference epochs which are commonly used in space systems have been defined. These * epochs can be used as the basis for offset computation. The supported epochs are: * {@link #getJulianEpoch(Field)}, {@link #getModifiedJulianEpoch(Field)}, {@link #getFiftiesEpoch(Field)}, * {@link #getCCSDSEpoch(Field)}, {@link #getGalileoEpoch(Field)}, {@link #getGPSEpoch(Field)}, * {@link #getJ2000Epoch(Field)}, {@link #getJavaEpoch(Field)}. There are also two factory methods * {@link #createJulianEpoch(CalculusFieldElement)} and {@link #createBesselianEpoch(CalculusFieldElement)} * that can be used to compute other reference epochs like J1900.0 or B1950.0. * In addition to these reference epochs, two other constants are defined for convenience: * {@link #getPastInfinity(Field)} and {@link #getFutureInfinity(Field)}, which can be used either * as dummy dates when a date is not yet initialized, or for initialization of loops searching for * a min or max date. *

*

* Instances of the FieldAbsoluteDate<T> class are guaranteed to be immutable. *

* @author Luc Maisonobe * @see TimeScale * @see TimeStamped * @see ChronologicalComparator */ public class FieldAbsoluteDate> implements FieldTimeStamped, TimeShiftable>, Comparable> { /** Reference epoch in seconds from 2000-01-01T12:00:00 TAI. *

Beware, it is not {@link #getJ2000Epoch(Field)} since it is in TAI and not in TT.

*/ private final long epoch; /** Offset from the reference epoch in seconds. */ private final T offset; /** Field used by default.*/ private Field field; /** Build an instance from an AbsoluteDate. * @param field used by default * @param date AbsoluteDate to instantiate as a FieldAbsoluteDate */ public FieldAbsoluteDate(final Field field, final AbsoluteDate date) { this.field = field; this.epoch = date.getEpoch(); this.offset = field.getZero().add(date.getOffset()); } /** Create an instance with a default value ({@link #getJ2000Epoch(Field)}). * *

This method uses the {@link DataContext#getDefault() default data context}. * * @param field field used by default * @see #FieldAbsoluteDate(Field, AbsoluteDate) */ @DefaultDataContext public FieldAbsoluteDate(final Field field) { final FieldAbsoluteDate j2000 = getJ2000Epoch(field); this.field = j2000.field; this.epoch = j2000.epoch; this.offset = j2000.offset; } /** Build an instance from an elapsed duration since to another instant. *

It is important to note that the elapsed duration is not * the difference between two readings on a time scale. As an example, * the duration between the two instants leading to the readings * 2005-12-31T23:59:59 and 2006-01-01T00:00:00 in the {@link UTCScale UTC} * time scale is not 1 second, but a stop watch would have measured * an elapsed duration of 2 seconds between these two instances because a leap * second was introduced at the end of 2005 in this time scale.

*

This constructor is the reverse of the {@link #durationFrom(FieldAbsoluteDate)} * method.

* @param since start instant of the measured duration * @param elapsedDuration physically elapsed duration from the since * instant, as measured in a regular time scale * @see #durationFrom(FieldAbsoluteDate) */ public FieldAbsoluteDate(final FieldAbsoluteDate since, final T elapsedDuration) { this.field = since.field; // Use 2Sum for high precision. final FieldSumAndResidual sumAndResidual = MathUtils.twoSum(since.offset, elapsedDuration); if (Double.isInfinite(sumAndResidual.getSum().getReal())) { offset = sumAndResidual.getSum(); epoch = (sumAndResidual.getSum().getReal() < 0) ? Long.MIN_VALUE : Long.MAX_VALUE; } else { final long dl = (long) FastMath.floor(sumAndResidual.getSum().getReal()); final T regularOffset = sumAndResidual.getSum().subtract(dl).add(sumAndResidual.getResidual()); if (regularOffset.getReal() >= 0) { // regular case, the offset is between 0.0 and 1.0 offset = regularOffset; epoch = since.epoch + dl; } else { // very rare case, the offset is just before a whole second // we will loose some bits of accuracy when adding 1 second // but this will ensure the offset remains in the [0.0; 1.0] interval offset = regularOffset.add(1.0); epoch = since.epoch + dl - 1; } } } /** Build an instance from a location (parsed from a string) in a {@link TimeScale time scale}. *

* The supported formats for location are mainly the ones defined in ISO-8601 standard, * the exact subset is explained in {@link DateTimeComponents#parseDateTime(String)}, * {@link DateComponents#parseDate(String)} and {@link TimeComponents#parseTime(String)}. *

*

* As CCSDS ASCII calendar segmented time code is a trimmed down version of ISO-8601, * it is also supported by this constructor. *

* @param field field utilized by default * @param location location in the time scale, must be in a supported format * @param timeScale time scale * @exception IllegalArgumentException if location string is not in a supported format */ public FieldAbsoluteDate(final Field field, final String location, final TimeScale timeScale) { this(field, DateTimeComponents.parseDateTime(location), timeScale); } /** Build an instance from a location in a {@link TimeScale time scale}. * @param field field utilized by default * @param location location in the time scale * @param timeScale time scale */ public FieldAbsoluteDate(final Field field, final DateTimeComponents location, final TimeScale timeScale) { this(field, location.getDate(), location.getTime(), timeScale); } /** Build an instance from a location in a {@link TimeScale time scale}. * @param field field utilized by default * @param date date location in the time scale * @param time time location in the time scale * @param timeScale time scale */ public FieldAbsoluteDate(final Field field, final DateComponents date, final TimeComponents time, final TimeScale timeScale) { final double seconds = time.getSecond(); final double tsOffset = timeScale.offsetToTAI(date, time); // Use 2Sum for high precision. final SumAndResidual sumAndResidual = MathUtils.twoSum(seconds, tsOffset); final long dl = (long) FastMath.floor(sumAndResidual.getSum()); final T regularOffset = field.getZero().add((sumAndResidual.getSum() - dl) + sumAndResidual.getResidual()); if (regularOffset.getReal() >= 0) { // regular case, the offset is between 0.0 and 1.0 offset = regularOffset; epoch = 60l * ((date.getJ2000Day() * 24l + time.getHour()) * 60l + time.getMinute() - time.getMinutesFromUTC() - 720l) + dl; } else { // very rare case, the offset is just before a whole second // we will loose some bits of accuracy when adding 1 second // but this will ensure the offset remains in the [0.0; 1.0] interval offset = regularOffset.add(1.0); epoch = 60l * ((date.getJ2000Day() * 24l + time.getHour()) * 60l + time.getMinute() - time.getMinutesFromUTC() - 720l) + dl - 1; } this.field = field; } /** Build an instance from a location in a {@link TimeScale time scale}. * @param field field utilized by default * @param year year number (may be 0 or negative for BC years) * @param month month number from 1 to 12 * @param day day number from 1 to 31 * @param hour hour number from 0 to 23 * @param minute minute number from 0 to 59 * @param second second number from 0.0 to 60.0 (excluded) * @param timeScale time scale * @exception IllegalArgumentException if inconsistent arguments * are given (parameters out of range) */ public FieldAbsoluteDate(final Field field, final int year, final int month, final int day, final int hour, final int minute, final double second, final TimeScale timeScale) throws IllegalArgumentException { this(field, new DateComponents(year, month, day), new TimeComponents(hour, minute, second), timeScale); } /** Build an instance from a location in a {@link TimeScale time scale}. * @param field field utilized by default * @param year year number (may be 0 or negative for BC years) * @param month month enumerate * @param day day number from 1 to 31 * @param hour hour number from 0 to 23 * @param minute minute number from 0 to 59 * @param second second number from 0.0 to 60.0 (excluded) * @param timeScale time scale * @exception IllegalArgumentException if inconsistent arguments * are given (parameters out of range) */ public FieldAbsoluteDate(final Field field, final int year, final Month month, final int day, final int hour, final int minute, final double second, final TimeScale timeScale) throws IllegalArgumentException { this(field, new DateComponents(year, month, day), new TimeComponents(hour, minute, second), timeScale); } /** Build an instance from a location in a {@link TimeScale time scale}. *

The hour is set to 00:00:00.000.

* @param field field utilized by default * @param date date location in the time scale * @param timeScale time scale * @exception IllegalArgumentException if inconsistent arguments * are given (parameters out of range) */ public FieldAbsoluteDate(final Field field, final DateComponents date, final TimeScale timeScale) throws IllegalArgumentException { this(field, date, TimeComponents.H00, timeScale); } /** Build an instance from a location in a {@link TimeScale time scale}. *

The hour is set to 00:00:00.000.

* @param field field utilized by default * @param year year number (may be 0 or negative for BC years) * @param month month number from 1 to 12 * @param day day number from 1 to 31 * @param timeScale time scale * @exception IllegalArgumentException if inconsistent arguments * are given (parameters out of range) */ public FieldAbsoluteDate(final Field field, final int year, final int month, final int day, final TimeScale timeScale) throws IllegalArgumentException { this(field, new DateComponents(year, month, day), TimeComponents.H00, timeScale); } /** Build an instance from a location in a {@link TimeScale time scale}. *

The hour is set to 00:00:00.000.

* @param field field utilized by default * @param year year number (may be 0 or negative for BC years) * @param month month enumerate * @param day day number from 1 to 31 * @param timeScale time scale * @exception IllegalArgumentException if inconsistent arguments * are given (parameters out of range) */ public FieldAbsoluteDate(final Field field, final int year, final Month month, final int day, final TimeScale timeScale) throws IllegalArgumentException { this(field, new DateComponents(year, month, day), TimeComponents.H00, timeScale); } /** Build an instance from a location in a {@link TimeScale time scale}. * @param field field utilized as default * @param location location in the time scale * @param timeScale time scale */ public FieldAbsoluteDate(final Field field, final Date location, final TimeScale timeScale) { this(field, new DateComponents(DateComponents.JAVA_EPOCH, (int) (location.getTime() / 86400000l)), new TimeComponents(0.001 * (location.getTime() % 86400000l)), timeScale); } /** Build an instance from an elapsed duration since to another instant. *

It is important to note that the elapsed duration is not * the difference between two readings on a time scale. * @param since start instant of the measured duration * @param elapsedDuration physically elapsed duration from the since * instant, as measured in a regular time scale */ public FieldAbsoluteDate(final FieldAbsoluteDate since, final double elapsedDuration) { this(since.epoch, elapsedDuration, since.offset); } /** Build an instance from an elapsed duration since to another instant. *

It is important to note that the elapsed duration is not * the difference between two readings on a time scale. * @param since start instant of the measured duration * @param elapsedDuration physically elapsed duration from the since * instant, as measured in a regular time scale */ public FieldAbsoluteDate(final AbsoluteDate since, final T elapsedDuration) { this(since.getEpoch(), since.getOffset(), elapsedDuration); } /** Build an instance from an apparent clock offset with respect to another * instant in the perspective of a specific {@link TimeScale time scale}. *

It is important to note that the apparent clock offset is the * difference between two readings on a time scale and not an elapsed * duration. As an example, the apparent clock offset between the two instants * leading to the readings 2005-12-31T23:59:59 and 2006-01-01T00:00:00 in the * {@link UTCScale UTC} time scale is 1 second, but the elapsed duration is 2 * seconds because a leap second has been introduced at the end of 2005 in this * time scale.

*

This constructor is the reverse of the {@link #offsetFrom(FieldAbsoluteDate, * TimeScale)} method.

* @param reference reference instant * @param apparentOffset apparent clock offset from the reference instant * (difference between two readings in the specified time scale) * @param timeScale time scale with respect to which the offset is defined * @see #offsetFrom(FieldAbsoluteDate, TimeScale) */ public FieldAbsoluteDate(final FieldAbsoluteDate reference, final double apparentOffset, final TimeScale timeScale) { this(reference.field, new DateTimeComponents(reference.getComponents(timeScale), apparentOffset), timeScale); } /** Build an instance from mixed double and field raw components. * @param epoch reference epoch in seconds from 2000-01-01T12:00:00 TAI * @param tA double part of offset since reference epoch * @param tB field part of offset since reference epoch * @since 9.3 */ private FieldAbsoluteDate(final long epoch, final double tA, final T tB) { this.field = tB.getField(); // Use 2Sum for high precision. final FieldSumAndResidual sumAndResidual = MathUtils.twoSum(field.getZero().add(tA), tB); if (Double.isInfinite(sumAndResidual.getSum().getReal())) { this.offset = sumAndResidual.getSum(); this.epoch = (sumAndResidual.getSum().getReal() < 0) ? Long.MIN_VALUE : Long.MAX_VALUE; } else { final long dl = (long) FastMath.floor(sumAndResidual.getSum().getReal()); final T regularOffset = sumAndResidual.getSum().subtract(dl).add(sumAndResidual.getResidual()); if (regularOffset.getReal() >= 0) { // regular case, the offset is between 0.0 and 1.0 this.offset = regularOffset; this.epoch = epoch + dl; } else { // very rare case, the offset is just before a whole second // we will loose some bits of accuracy when adding 1 second // but this will ensure the offset remains in the [0.0; 1.0) interval this.offset = regularOffset.add(1.0); this.epoch = epoch + dl - 1; } } } /** Build an instance from a CCSDS Unsegmented Time Code (CUC). *

* CCSDS Unsegmented Time Code is defined in the blue book: * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010 *

*

* If the date to be parsed is formatted using version 3 of the standard * (CCSDS 301.0-B-3 published in 2002) or if the extension of the preamble * field introduced in version 4 of the standard is not used, then the * {@code preambleField2} parameter can be set to 0. *

* *

This method uses the {@link DataContext#getDefault() default data context} if * the CCSDS epoch is used. * * @param field field for the components * @param preambleField1 first byte of the field specifying the format, often * not transmitted in data interfaces, as it is constant for a given data interface * @param preambleField2 second byte of the field specifying the format * (added in revision 4 of the CCSDS standard in 2010), often not transmitted in data * interfaces, as it is constant for a given data interface (value ignored if presence * not signaled in {@code preambleField1}) * @param timeField byte array containing the time code * @param agencyDefinedEpoch reference epoch, ignored if the preamble field * specifies the {@link #getCCSDSEpoch(Field) CCSDS reference epoch} is used (and hence * may be null in this case) * @return an instance corresponding to the specified date * @param the type of the field elements * @see #parseCCSDSUnsegmentedTimeCode(Field, byte, byte, byte[], FieldAbsoluteDate, * FieldAbsoluteDate) */ @DefaultDataContext public static > FieldAbsoluteDate parseCCSDSUnsegmentedTimeCode(final Field field, final byte preambleField1, final byte preambleField2, final byte[] timeField, final FieldAbsoluteDate agencyDefinedEpoch) { return parseCCSDSUnsegmentedTimeCode(field, preambleField1, preambleField2, timeField, agencyDefinedEpoch, new FieldAbsoluteDate<>( field, DataContext.getDefault().getTimeScales().getCcsdsEpoch())); } /** * Build an instance from a CCSDS Unsegmented Time Code (CUC). *

* CCSDS Unsegmented Time Code is defined in the blue book: CCSDS Time Code Format * (CCSDS 301.0-B-4) published in November 2010 *

*

* If the date to be parsed is formatted using version 3 of the standard (CCSDS * 301.0-B-3 published in 2002) or if the extension of the preamble field introduced * in version 4 of the standard is not used, then the {@code preambleField2} parameter * can be set to 0. *

* * @param the type of the field elements * @param field field for the components * @param preambleField1 first byte of the field specifying the format, often not * transmitted in data interfaces, as it is constant for a * given data interface * @param preambleField2 second byte of the field specifying the format (added in * revision 4 of the CCSDS standard in 2010), often not * transmitted in data interfaces, as it is constant for a * given data interface (value ignored if presence not * signaled in {@code preambleField1}) * @param timeField byte array containing the time code * @param agencyDefinedEpoch reference epoch, ignored if the preamble field specifies * the CCSDS reference epoch is used (and hence may be null * in this case) * @param ccsdsEpoch reference epoch, ignored if the preamble field specifies * the agency epoch is used. * @return an instance corresponding to the specified date * @since 10.1 */ public static > FieldAbsoluteDate parseCCSDSUnsegmentedTimeCode( final Field field, final byte preambleField1, final byte preambleField2, final byte[] timeField, final FieldAbsoluteDate agencyDefinedEpoch, final FieldAbsoluteDate ccsdsEpoch) { // time code identification and reference epoch final FieldAbsoluteDate epochF; switch (preambleField1 & 0x70) { case 0x10: // the reference epoch is CCSDS epoch 1958-01-01T00:00:00 TAI epochF = ccsdsEpoch; break; case 0x20: // the reference epoch is agency defined if (agencyDefinedEpoch == null) { throw new OrekitException(OrekitMessages.CCSDS_DATE_MISSING_AGENCY_EPOCH); } epochF = agencyDefinedEpoch; break; default : throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD, formatByte(preambleField1)); } // time field lengths int coarseTimeLength = 1 + ((preambleField1 & 0x0C) >>> 2); int fineTimeLength = preambleField1 & 0x03; if ((preambleField1 & 0x80) != 0x0) { // there is an additional octet in preamble field coarseTimeLength += (preambleField2 & 0x60) >>> 5; fineTimeLength += (preambleField2 & 0x1C) >>> 2; } if (timeField.length != coarseTimeLength + fineTimeLength) { throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_LENGTH_TIME_FIELD, timeField.length, coarseTimeLength + fineTimeLength); } T seconds = field.getZero(); for (int i = 0; i < coarseTimeLength; ++i) { seconds = seconds.multiply(256).add(field.getZero().add(toUnsigned(timeField[i]))); } T subseconds = field.getZero(); for (int i = timeField.length - 1; i >= coarseTimeLength; --i) { subseconds = (subseconds.add(toUnsigned(timeField[i]))).divide(256); } return new FieldAbsoluteDate<>(epochF, seconds).shiftedBy(subseconds); } /** Build an instance from a CCSDS Day Segmented Time Code (CDS). *

* CCSDS Day Segmented Time Code is defined in the blue book: * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010 *

* *

This method uses the {@link DataContext#getDefault() default data context}. * * @param field field for the components * @param preambleField field specifying the format, often not transmitted in * data interfaces, as it is constant for a given data interface * @param timeField byte array containing the time code * @param agencyDefinedEpoch reference epoch, ignored if the preamble field * specifies the {@link #getCCSDSEpoch(Field) CCSDS reference epoch} is used (and hence * may be null in this case) * @return an instance corresponding to the specified date * @param the type of the field elements * @see #parseCCSDSDaySegmentedTimeCode(Field, byte, byte[], DateComponents, * TimeScale) */ @DefaultDataContext public static > FieldAbsoluteDate parseCCSDSDaySegmentedTimeCode(final Field field, final byte preambleField, final byte[] timeField, final DateComponents agencyDefinedEpoch) { return parseCCSDSDaySegmentedTimeCode(field, preambleField, timeField, agencyDefinedEpoch, DataContext.getDefault().getTimeScales().getUTC()); } /** * Build an instance from a CCSDS Day Segmented Time Code (CDS). *

* CCSDS Day Segmented Time Code is defined in the blue book: CCSDS Time Code Format * (CCSDS 301.0-B-4) published in November 2010 *

* * @param the type of the field elements * @param field field for the components * @param preambleField field specifying the format, often not transmitted in * data interfaces, as it is constant for a given data * interface * @param timeField byte array containing the time code * @param agencyDefinedEpoch reference epoch, ignored if the preamble field specifies * the {@link #getCCSDSEpoch(Field) CCSDS reference epoch} * is used (and hence may be null in this case) * @param utc time scale used to compute date and time components. * @return an instance corresponding to the specified date * @since 10.1 */ public static > FieldAbsoluteDate parseCCSDSDaySegmentedTimeCode( final Field field, final byte preambleField, final byte[] timeField, final DateComponents agencyDefinedEpoch, final TimeScale utc) { // time code identification if ((preambleField & 0xF0) != 0x40) { throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD, formatByte(preambleField)); } // reference epoch final DateComponents epochDC; if ((preambleField & 0x08) == 0x00) { // the reference epoch is CCSDS epoch 1958-01-01T00:00:00 TAI epochDC = DateComponents.CCSDS_EPOCH; } else { // the reference epoch is agency defined if (agencyDefinedEpoch == null) { throw new OrekitException(OrekitMessages.CCSDS_DATE_MISSING_AGENCY_EPOCH); } epochDC = agencyDefinedEpoch; } // time field lengths final int daySegmentLength = ((preambleField & 0x04) == 0x0) ? 2 : 3; final int subMillisecondLength = (preambleField & 0x03) << 1; if (subMillisecondLength == 6) { throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD, formatByte(preambleField)); } if (timeField.length != daySegmentLength + 4 + subMillisecondLength) { throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_LENGTH_TIME_FIELD, timeField.length, daySegmentLength + 4 + subMillisecondLength); } int i = 0; int day = 0; while (i < daySegmentLength) { day = day * 256 + toUnsigned(timeField[i++]); } long milliInDay = 0l; while (i < daySegmentLength + 4) { milliInDay = milliInDay * 256 + toUnsigned(timeField[i++]); } final int milli = (int) (milliInDay % 1000l); final int seconds = (int) ((milliInDay - milli) / 1000l); double subMilli = 0; double divisor = 1; while (i < timeField.length) { subMilli = subMilli * 256 + toUnsigned(timeField[i++]); divisor *= 1000; } final DateComponents date = new DateComponents(epochDC, day); final TimeComponents time = new TimeComponents(seconds); return new FieldAbsoluteDate<>(field, date, time, utc).shiftedBy(milli * 1.0e-3 + subMilli / divisor); } /** Build an instance from a CCSDS Calendar Segmented Time Code (CCS). *

* CCSDS Calendar Segmented Time Code is defined in the blue book: * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010 *

* *

This method uses the {@link DataContext#getDefault() default data context}. * * @param preambleField field specifying the format, often not transmitted in * data interfaces, as it is constant for a given data interface * @param timeField byte array containing the time code * @return an instance corresponding to the specified date * @see #parseCCSDSCalendarSegmentedTimeCode(byte, byte[], TimeScale) */ @DefaultDataContext public FieldAbsoluteDate parseCCSDSCalendarSegmentedTimeCode(final byte preambleField, final byte[] timeField) { return parseCCSDSCalendarSegmentedTimeCode(preambleField, timeField, DataContext.getDefault().getTimeScales().getUTC()); } /** * Build an instance from a CCSDS Calendar Segmented Time Code (CCS). *

* CCSDS Calendar Segmented Time Code is defined in the blue book: CCSDS Time Code * Format (CCSDS 301.0-B-4) published in November 2010 *

* * @param preambleField field specifying the format, often not transmitted in data * interfaces, as it is constant for a given data interface * @param timeField byte array containing the time code * @param utc time scale used to compute date and time components. * @return an instance corresponding to the specified date * @since 10.1 */ public FieldAbsoluteDate parseCCSDSCalendarSegmentedTimeCode( final byte preambleField, final byte[] timeField, final TimeScale utc) { // time code identification if ((preambleField & 0xF0) != 0x50) { throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD, formatByte(preambleField)); } // time field length final int length = 7 + (preambleField & 0x07); if (length == 14) { throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD, formatByte(preambleField)); } if (timeField.length != length) { throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_LENGTH_TIME_FIELD, timeField.length, length); } // date part in the first four bytes final DateComponents date; if ((preambleField & 0x08) == 0x00) { // month of year and day of month variation date = new DateComponents(toUnsigned(timeField[0]) * 256 + toUnsigned(timeField[1]), toUnsigned(timeField[2]), toUnsigned(timeField[3])); } else { // day of year variation date = new DateComponents(toUnsigned(timeField[0]) * 256 + toUnsigned(timeField[1]), toUnsigned(timeField[2]) * 256 + toUnsigned(timeField[3])); } // time part from bytes 5 to last (between 7 and 13 depending on precision) final TimeComponents time = new TimeComponents(toUnsigned(timeField[4]), toUnsigned(timeField[5]), toUnsigned(timeField[6])); double subSecond = 0; double divisor = 1; for (int i = 7; i < length; ++i) { subSecond = subSecond * 100 + toUnsigned(timeField[i]); divisor *= 100; } return new FieldAbsoluteDate<>(field, date, time, utc).shiftedBy(subSecond / divisor); } /** Decode a signed byte as an unsigned int value. * @param b byte to decode * @return an unsigned int value */ private static int toUnsigned(final byte b) { final int i = (int) b; return (i < 0) ? 256 + i : i; } /** Format a byte as an hex string for error messages. * @param data byte to format * @return a formatted string */ private static String formatByte(final byte data) { return "0x" + Integer.toHexString(data).toUpperCase(); } /** Build an instance corresponding to a Julian Day date. * @param jd Julian day * @param secondsSinceNoon seconds in the Julian day * (BEWARE, Julian days start at noon, so 0.0 is noon) * @param timeScale time scale in which the seconds in day are defined * @return a new instant * @param the type of the field elements */ public static > FieldAbsoluteDate createJDDate(final int jd, final T secondsSinceNoon, final TimeScale timeScale) { return new FieldAbsoluteDate<>(secondsSinceNoon.getField(), new DateComponents(DateComponents.JULIAN_EPOCH, jd), TimeComponents.H12, timeScale).shiftedBy(secondsSinceNoon); } /** Build an instance corresponding to a Modified Julian Day date. * @param mjd modified Julian day * @param secondsInDay seconds in the day * @param timeScale time scale in which the seconds in day are defined * @return a new instant * @param the type of the field elements */ public static > FieldAbsoluteDate createMJDDate(final int mjd, final T secondsInDay, final TimeScale timeScale) { return new FieldAbsoluteDate<>(secondsInDay.getField(), new DateComponents(DateComponents.MODIFIED_JULIAN_EPOCH, mjd), TimeComponents.H00, timeScale).shiftedBy(secondsInDay); } /** Build an instance corresponding to a GPS date. * *

This method uses the {@link DataContext#getDefault() default data context}. * *

GPS dates are provided as a week number starting at * {@link #getGPSEpoch(Field) GPS epoch} and as a number of milliseconds * since week start.

* @param weekNumber week number since {@link #getGPSEpoch(Field) GPS epoch} * @param milliInWeek number of milliseconds since week start * @return a new instant * @param the type of the field elements * @see #createGPSDate(int, CalculusFieldElement, TimeScale) */ @DefaultDataContext public static > FieldAbsoluteDate createGPSDate(final int weekNumber, final T milliInWeek) { return createGPSDate(weekNumber, milliInWeek, DataContext.getDefault().getTimeScales().getGPS()); } /** * Build an instance corresponding to a GPS date. *

GPS dates are provided as a week number starting at * {@link #getGPSEpoch(Field) GPS epoch} and as a number of milliseconds since week * start.

* * @param the type of the field elements * @param weekNumber week number since {@link #getGPSEpoch(Field) GPS epoch} * @param milliInWeek number of milliseconds since week start * @param gps GPS time scale. * @return a new instant * @since 10.1 */ public static > FieldAbsoluteDate createGPSDate( final int weekNumber, final T milliInWeek, final TimeScale gps) { final int day = (int) FastMath.floor(milliInWeek.getReal() / (1000.0 * Constants.JULIAN_DAY)); final T secondsInDay = milliInWeek.divide(1000.0).subtract(day * Constants.JULIAN_DAY); return new FieldAbsoluteDate<>(milliInWeek.getField(), new DateComponents(DateComponents.GPS_EPOCH, weekNumber * 7 + day), TimeComponents.H00, gps).shiftedBy(secondsInDay); } /** Build an instance corresponding to a Julian Epoch (JE). *

According to Lieske paper: * Precession Matrix Based on IAU (1976) System of Astronomical Constants, Astronomy and Astrophysics, * vol. 73, no. 3, Mar. 1979, p. 282-284, Julian Epoch is related to Julian Ephemeris Date as: *

JE = 2000.0 + (JED - 2451545.0) / 365.25
*

This method reverts the formula above and computes an {@code FieldAbsoluteDate} from the Julian Epoch. * *

This method uses the {@link DataContext#getDefault() default data context}. * * @param the type of the field elements * @param julianEpoch Julian epoch, like 2000.0 for defining the classical reference J2000.0 * @return a new instant * @see #getJ2000Epoch(Field) * @see #createBesselianEpoch(CalculusFieldElement) * @see #createJulianEpoch(CalculusFieldElement, TimeScales) */ @DefaultDataContext public static > FieldAbsoluteDate createJulianEpoch(final T julianEpoch) { return createJulianEpoch(julianEpoch, DataContext.getDefault().getTimeScales()); } /** * Build an instance corresponding to a Julian Epoch (JE). *

According to Lieske paper: * Precession Matrix Based on IAU (1976) System of Astronomical Constants, * Astronomy and Astrophysics, vol. 73, no. 3, Mar. 1979, p. 282-284, Julian Epoch is * related to Julian Ephemeris Date as: *

JE = 2000.0 + (JED - 2451545.0) / 365.25
*

This method reverts the formula above and computes an {@code * FieldAbsoluteDate} from the Julian Epoch. * * @param the type of the field elements * @param julianEpoch Julian epoch, like 2000.0 for defining the classical reference * J2000.0 * @param timeScales used in the computation. * @return a new instant * @see #getJ2000Epoch(Field) * @see #createBesselianEpoch(CalculusFieldElement) * @see TimeScales#createJulianEpoch(double) * @since 10.1 */ public static > FieldAbsoluteDate createJulianEpoch( final T julianEpoch, final TimeScales timeScales) { final Field field = julianEpoch.getField(); return new FieldAbsoluteDate<>(new FieldAbsoluteDate<>(field, timeScales.getJ2000Epoch()), julianEpoch.subtract(2000.0).multiply(Constants.JULIAN_YEAR)); } /** Build an instance corresponding to a Besselian Epoch (BE). *

According to Lieske paper: * Precession Matrix Based on IAU (1976) System of Astronomical Constants, Astronomy and Astrophysics, * vol. 73, no. 3, Mar. 1979, p. 282-284, Besselian Epoch is related to Julian Ephemeris Date as:

*
     * BE = 1900.0 + (JED - 2415020.31352) / 365.242198781
     * 
*

* This method reverts the formula above and computes an {@code FieldAbsoluteDate} from the Besselian Epoch. *

* *

This method uses the {@link DataContext#getDefault() default data context}. * * @param the type of the field elements * @param besselianEpoch Besselian epoch, like 1950 for defining the classical reference B1950.0 * @return a new instant * @see #createJulianEpoch(CalculusFieldElement) * @see #createBesselianEpoch(CalculusFieldElement, TimeScales) */ @DefaultDataContext public static > FieldAbsoluteDate createBesselianEpoch(final T besselianEpoch) { return createBesselianEpoch(besselianEpoch, DataContext.getDefault().getTimeScales()); } /** * Build an instance corresponding to a Besselian Epoch (BE). *

According to Lieske paper: * Precession Matrix Based on IAU (1976) System of Astronomical Constants, * Astronomy and Astrophysics, vol. 73, no. 3, Mar. 1979, p. 282-284, Besselian Epoch * is related to Julian Ephemeris Date as:

*
     * BE = 1900.0 + (JED - 2415020.31352) / 365.242198781
     * 
*

* This method reverts the formula above and computes an {@code FieldAbsoluteDate} * from the Besselian Epoch. *

* * @param the type of the field elements * @param besselianEpoch Besselian epoch, like 1950 for defining the classical * reference B1950.0 * @param timeScales used in the computation. * @return a new instant * @see #createJulianEpoch(CalculusFieldElement) * @see TimeScales#createBesselianEpoch(double) * @since 10.1 */ public static > FieldAbsoluteDate createBesselianEpoch( final T besselianEpoch, final TimeScales timeScales) { final Field field = besselianEpoch.getField(); return new FieldAbsoluteDate<>(new FieldAbsoluteDate<>(field, timeScales.getJ2000Epoch()), besselianEpoch.subtract(1900).multiply(Constants.BESSELIAN_YEAR).add( Constants.JULIAN_DAY * (-36525) + Constants.JULIAN_DAY * 0.31352)); } /** Reference epoch for julian dates: -4712-01-01T12:00:00 Terrestrial Time. *

Both java.util.Date and {@link DateComponents} classes * follow the astronomical conventions and consider a year 0 between * years -1 and +1, hence this reference date lies in year -4712 and not * in year -4713 as can be seen in other documents or programs that obey * a different convention (for example the convcal utility).

* *

This method uses the {@link DataContext#getDefault() default data context}. * * @param the type of the field elements * @param field field for the components * @return the reference epoch for julian dates as a FieldAbsoluteDate * @see AbsoluteDate#JULIAN_EPOCH * @see TimeScales#getJulianEpoch() */ @DefaultDataContext public static > FieldAbsoluteDate getJulianEpoch(final Field field) { return new FieldAbsoluteDate<>(field, DataContext.getDefault().getTimeScales().getJulianEpoch()); } /** Reference epoch for modified julian dates: 1858-11-17T00:00:00 Terrestrial Time. * *

This method uses the {@link DataContext#getDefault() default data context}. * * @param the type of the field elements * @param field field for the components * @return the reference epoch for modified julian dates as a FieldAbsoluteDate * @see AbsoluteDate#MODIFIED_JULIAN_EPOCH * @see TimeScales#getModifiedJulianEpoch() */ @DefaultDataContext public static > FieldAbsoluteDate getModifiedJulianEpoch(final Field field) { return new FieldAbsoluteDate<>(field, DataContext.getDefault().getTimeScales().getModifiedJulianEpoch()); } /** Reference epoch for 1950 dates: 1950-01-01T00:00:00 Terrestrial Time. * *

This method uses the {@link DataContext#getDefault() default data context}. * * @param the type of the field elements * @param field field for the components * @return the reference epoch for 1950 dates as a FieldAbsoluteDate * @see AbsoluteDate#FIFTIES_EPOCH * @see TimeScales#getFiftiesEpoch() */ @DefaultDataContext public static > FieldAbsoluteDate getFiftiesEpoch(final Field field) { return new FieldAbsoluteDate<>(field, DataContext.getDefault().getTimeScales().getFiftiesEpoch()); } /** Reference epoch for CCSDS Time Code Format (CCSDS 301.0-B-4): * *

This method uses the {@link DataContext#getDefault() default data context}. * * 1958-01-01T00:00:00 International Atomic Time (not UTC). * @param the type of the field elements * @param field field for the components * @return the reference epoch for CCSDS Time Code Format as a FieldAbsoluteDate * @see AbsoluteDate#CCSDS_EPOCH * @see TimeScales#getCcsdsEpoch() */ @DefaultDataContext public static > FieldAbsoluteDate getCCSDSEpoch(final Field field) { return new FieldAbsoluteDate<>(field, DataContext.getDefault().getTimeScales().getCcsdsEpoch()); } /** Reference epoch for Galileo System Time: 1999-08-22T00:00:00 UTC. * *

This method uses the {@link DataContext#getDefault() default data context}. * * @param the type of the field elements * @param field field for the components * @return the reference epoch for Galileo System Time as a FieldAbsoluteDate * @see AbsoluteDate#GALILEO_EPOCH * @see TimeScales#getGalileoEpoch() */ @DefaultDataContext public static > FieldAbsoluteDate getGalileoEpoch(final Field field) { return new FieldAbsoluteDate<>(field, DataContext.getDefault().getTimeScales().getGalileoEpoch()); } /** Reference epoch for GPS weeks: 1980-01-06T00:00:00 GPS time. * *

This method uses the {@link DataContext#getDefault() default data context}. * * @param the type of the field elements * @param field field for the components * @return the reference epoch for GPS weeks as a FieldAbsoluteDate * @see AbsoluteDate#GPS_EPOCH * @see TimeScales#getGpsEpoch() */ @DefaultDataContext public static > FieldAbsoluteDate getGPSEpoch(final Field field) { return new FieldAbsoluteDate<>(field, DataContext.getDefault().getTimeScales().getGpsEpoch()); } /** J2000.0 Reference epoch: 2000-01-01T12:00:00 Terrestrial Time (not UTC). * *

This method uses the {@link DataContext#getDefault() default data context}. * * @param the type of the field elements * @param field field for the components * @return the J2000.0 reference epoch as a FieldAbsoluteDate * @see #createJulianEpoch(CalculusFieldElement) * @see AbsoluteDate#J2000_EPOCH * @see TimeScales#getJ2000Epoch() */ @DefaultDataContext public static > FieldAbsoluteDate getJ2000Epoch(final Field field) { return new FieldAbsoluteDate<>(field, DataContext.getDefault().getTimeScales().getJ2000Epoch()); } /** Java Reference epoch: 1970-01-01T00:00:00 Universal Time Coordinate. * *

This method uses the {@link DataContext#getDefault() default data context}. * *

* Between 1968-02-01 and 1972-01-01, UTC-TAI = 4.213 170 0s + (MJD - 39 126) x 0.002 592s. * As on 1970-01-01 MJD = 40587, UTC-TAI = 8.000082s *

* @param the type of the field elements * @param field field for the components * @return the Java reference epoch as a FieldAbsoluteDate * @see AbsoluteDate#JAVA_EPOCH * @see TimeScales#getJavaEpoch() */ @DefaultDataContext public static > FieldAbsoluteDate getJavaEpoch(final Field field) { return new FieldAbsoluteDate<>(field, DataContext.getDefault().getTimeScales().getJavaEpoch()); } /** Dummy date at infinity in the past direction. * @param the type of the field elements * @param field field for the components * @return a dummy date at infinity in the past direction as a FieldAbsoluteDate * @see AbsoluteDate#PAST_INFINITY * @see TimeScales#getPastInfinity() */ public static > FieldAbsoluteDate getPastInfinity(final Field field) { return new FieldAbsoluteDate<>(field, AbsoluteDate.PAST_INFINITY); } /** Dummy date at infinity in the future direction. * @param the type of the field elements * @param field field for the components * @return a dummy date at infinity in the future direction as a FieldAbsoluteDate * @see AbsoluteDate#FUTURE_INFINITY * @see TimeScales#getFutureInfinity() */ public static > FieldAbsoluteDate getFutureInfinity(final Field field) { return new FieldAbsoluteDate<>(field, AbsoluteDate.FUTURE_INFINITY); } /** * Get an arbitrary date. Useful when a non-null date is needed but its values does * not matter. * * @param the type of the field elements * @param field field for the components * @return an arbitrary date. */ public static > FieldAbsoluteDate getArbitraryEpoch( final Field field) { return new FieldAbsoluteDate<>(field, AbsoluteDate.ARBITRARY_EPOCH); } /** Get a time-shifted date. *

* Calling this method is equivalent to call {@code new FieldAbsoluteDate<>(this, dt)}. *

* @param dt time shift in seconds * @return a new date, shifted with respect to instance (which is immutable) * @see org.orekit.utils.PVCoordinates#shiftedBy(double) * @see org.orekit.attitudes.Attitude#shiftedBy(double) * @see org.orekit.orbits.Orbit#shiftedBy(double) * @see org.orekit.propagation.SpacecraftState#shiftedBy(double) */ public FieldAbsoluteDate shiftedBy(final T dt) { return new FieldAbsoluteDate<>(this, dt); } /** Compute the physically elapsed duration between two instants. *

The returned duration is the number of seconds physically * elapsed between the two instants, measured in a regular time * scale with respect to surface of the Earth (i.e either the {@link * TAIScale TAI scale}, the {@link TTScale TT scale} or the {@link * GPSScale GPS scale}). It is the only method that gives a * duration with a physical meaning.

*

This method gives the same result (with less computation) * as calling {@link #offsetFrom(FieldAbsoluteDate, TimeScale)} * with a second argument set to one of the regular scales cited * above.

*

This method is the reverse of the {@link #FieldAbsoluteDate(FieldAbsoluteDate, * double)} constructor.

* @param instant instant to subtract from the instance * @return offset in seconds between the two instants (positive * if the instance is posterior to the argument) * @see #offsetFrom(FieldAbsoluteDate, TimeScale) * @see #FieldAbsoluteDate(FieldAbsoluteDate, double) */ public T durationFrom(final FieldAbsoluteDate instant) { return offset.subtract(instant.offset).add(epoch - instant.epoch); } /** Compute the physically elapsed duration between two instants. *

The returned duration is the number of seconds physically * elapsed between the two instants, measured in a regular time * scale with respect to surface of the Earth (i.e either the {@link * TAIScale TAI scale}, the {@link TTScale TT scale} or the {@link * GPSScale GPS scale}). It is the only method that gives a * duration with a physical meaning.

*

This method gives the same result (with less computation) * as calling {@link #offsetFrom(FieldAbsoluteDate, TimeScale)} * with a second argument set to one of the regular scales cited * above.

*

This method is the reverse of the {@link #FieldAbsoluteDate(FieldAbsoluteDate, * double)} constructor.

* @param instant instant to subtract from the instance * @return offset in seconds between the two instants (positive * if the instance is posterior to the argument) * @see #offsetFrom(FieldAbsoluteDate, TimeScale) * @see #FieldAbsoluteDate(FieldAbsoluteDate, double) */ public T durationFrom(final AbsoluteDate instant) { return offset.subtract(instant.getOffset()).add(epoch - instant.getEpoch()); } /** Compute the apparent clock offset between two instant in the * perspective of a specific {@link TimeScale time scale}. *

The offset is the number of seconds counted in the given * time scale between the locations of the two instants, with * all time scale irregularities removed (i.e. considering all * days are exactly 86400 seconds long). This method will give * a result that may not have a physical meaning if the time scale * is irregular. For example since a leap second was introduced at * the end of 2005, the apparent offset between 2005-12-31T23:59:59 * and 2006-01-01T00:00:00 is 1 second, but the physical duration * of the corresponding time interval as returned by the {@link * #durationFrom(FieldAbsoluteDate)} method is 2 seconds.

*

This method is the reverse of the {@link #FieldAbsoluteDate(FieldAbsoluteDate, * double, TimeScale)} constructor.

* @param instant instant to subtract from the instance * @param timeScale time scale with respect to which the offset should * be computed * @return apparent clock offset in seconds between the two instants * (positive if the instance is posterior to the argument) * @see #durationFrom(FieldAbsoluteDate) * @see #FieldAbsoluteDate(FieldAbsoluteDate, double, TimeScale) */ public T offsetFrom(final FieldAbsoluteDate instant, final TimeScale timeScale) { final long elapsedDurationA = epoch - instant.epoch; final T elapsedDurationB = offset.add(timeScale.offsetFromTAI(this)). subtract(instant.offset.add(timeScale.offsetFromTAI(instant))); return elapsedDurationB.add(elapsedDurationA); } /** Compute the offset between two time scales at the current instant. *

The offset is defined as l₁-l₂ * where l₁ is the location of the instant in * the scale1 time scale and l₂ is the * location of the instant in the scale2 time scale.

* @param scale1 first time scale * @param scale2 second time scale * @return offset in seconds between the two time scales at the * current instant */ public T timeScalesOffset(final TimeScale scale1, final TimeScale scale2) { return scale1.offsetFromTAI(this).subtract(scale2.offsetFromTAI(this)); } /** Convert the instance to a Java {@link java.util.Date Date}. *

Conversion to the Date class induces a loss of precision because * the Date class does not provide sub-millisecond information. Java Dates * are considered to be locations in some times scales.

* @param timeScale time scale to use * @return a {@link java.util.Date Date} instance representing the location * of the instant in the time scale */ public Date toDate(final TimeScale timeScale) { final double time = epoch + (offset.getReal() + timeScale.offsetFromTAI(this).getReal()); return new Date(FastMath.round((time + 10957.5 * 86400.0) * 1000)); } /** Split the instance into date/time components. * @param timeScale time scale to use * @return date/time components */ public DateTimeComponents getComponents(final TimeScale timeScale) { if (Double.isInfinite(offset.getReal())) { // special handling for past and future infinity if (offset.getReal() < 0) { return new DateTimeComponents(DateComponents.MIN_EPOCH, TimeComponents.H00); } else { return new DateTimeComponents(DateComponents.MAX_EPOCH, new TimeComponents(23, 59, 59.999)); } } // Compute offset from 2000-01-01T00:00:00 in specified time scale. // Use 2Sum for high accuracy. final double taiOffset = timeScale.offsetFromTAI(this).getReal(); final SumAndResidual sumAndResidual = MathUtils.twoSum(offset.getReal(), taiOffset); // split date and time final long carry = (long) FastMath.floor(sumAndResidual.getSum()); double offset2000B = (sumAndResidual.getSum() - carry) + sumAndResidual.getResidual(); long offset2000A = epoch + carry + 43200l; if (offset2000B < 0) { offset2000A -= 1; offset2000B += 1; } long time = offset2000A % 86400l; if (time < 0l) { time += 86400l; } final int date = (int) ((offset2000A - time) / 86400l); // extract calendar elements final DateComponents dateComponents = new DateComponents(DateComponents.J2000_EPOCH, date); // extract time element, accounting for leap seconds final double leap = timeScale.insideLeap(this) ? timeScale.getLeap(this.toAbsoluteDate()) : 0; final int minuteDuration = timeScale.minuteDuration(this); final TimeComponents timeComponents = TimeComponents.fromSeconds((int) time, offset2000B, leap, minuteDuration); // build the components return new DateTimeComponents(dateComponents, timeComponents); } /** Split the instance into date/time components for a local time. * *

This method uses the {@link DataContext#getDefault() default data context}. * * @param minutesFromUTC offset in minutes from UTC (positive Eastwards UTC, * negative Westward UTC) * @return date/time components * @see #getComponents(int, TimeScale) */ @DefaultDataContext public DateTimeComponents getComponents(final int minutesFromUTC) { return getComponents(minutesFromUTC, DataContext.getDefault().getTimeScales().getUTC()); } /** * Split the instance into date/time components for a local time. * * @param minutesFromUTC offset in minutes from UTC (positive Eastwards UTC, * negative Westward UTC) * @param utc time scale used to compute date and time components. * @return date/time components * @since 10.1 */ public DateTimeComponents getComponents(final int minutesFromUTC, final TimeScale utc) { final DateTimeComponents utcComponents = getComponents(utc); // shift the date according to UTC offset, but WITHOUT touching the seconds, // as they may exceed 60.0 during a leap seconds introduction, // and we want to preserve these special cases final double seconds = utcComponents.getTime().getSecond(); int minute = utcComponents.getTime().getMinute() + minutesFromUTC; final int hourShift; if (minute < 0) { hourShift = (minute - 59) / 60; } else if (minute > 59) { hourShift = minute / 60; } else { hourShift = 0; } minute -= 60 * hourShift; int hour = utcComponents.getTime().getHour() + hourShift; final int dayShift; if (hour < 0) { dayShift = (hour - 23) / 24; } else if (hour > 23) { dayShift = hour / 24; } else { dayShift = 0; } hour -= 24 * dayShift; return new DateTimeComponents(new DateComponents(utcComponents.getDate(), dayShift), new TimeComponents(hour, minute, seconds, minutesFromUTC)); } /** {@inheritDoc} */ public FieldAbsoluteDate getDate() { return this; } /** Get the field. * @return field instance. */ public Field getField() { return field; } /** Split the instance into date/time components for a time zone. * *

This method uses the {@link DataContext#getDefault() default data context}. * * @param timeZone time zone * @return date/time components * @see #getComponents(TimeZone, TimeScale) */ @DefaultDataContext public DateTimeComponents getComponents(final TimeZone timeZone) { return getComponents(timeZone, DataContext.getDefault().getTimeScales().getUTC()); } /** Split the instance into date/time components for a time zone. * @param timeZone time zone * @param utc time scale used to compute date and time components. * @return date/time components * @since 10.1 */ public DateTimeComponents getComponents(final TimeZone timeZone, final TimeScale utc) { final FieldAbsoluteDate javaEpoch = new FieldAbsoluteDate<>(field, DateComponents.JAVA_EPOCH, utc); final long milliseconds = FastMath.round((offsetFrom(javaEpoch, utc).getReal()) * 1000); return getComponents(timeZone.getOffset(milliseconds) / 60000, utc); } /** Compare the instance with another date. * @param date other date to compare the instance to * @return a negative integer, zero, or a positive integer as this date * is before, simultaneous, or after the specified date. */ public int compareTo(final FieldAbsoluteDate date) { return Double.compare(durationFrom(date).getReal(), 0.0); } /** Check if the instance represents the same time as another instance. * @param date other date * @return true if the instance and the other date refer to the same instant */ @SuppressWarnings("unchecked") public boolean equals(final Object date) { if (date == this) { // first fast check return true; } if (date instanceof FieldAbsoluteDate) { return durationFrom((FieldAbsoluteDate) date).getReal() == 0.0; } return false; } /** Check if the instance represents the same time as another. * @param other the instant to compare this date to * @return true if the instance and the argument refer to the same instant * @see #isCloseTo(FieldTimeStamped, double) * @since 10.1 */ public boolean isEqualTo(final FieldTimeStamped other) { return this.equals(other.getDate()); } /** Check if the instance time is close to another. * @param other the instant to compare this date to * @param tolerance the separation, in seconds, under which the two instants will be considered close to each other * @return true if the duration between the instance and the argument is strictly below the tolerance * @see #isEqualTo(FieldTimeStamped) * @since 10.1 */ public boolean isCloseTo(final FieldTimeStamped other, final double tolerance) { return FastMath.abs(this.durationFrom(other.getDate()).getReal()) < tolerance; } /** Check if the instance represents a time that is strictly before another. * @param other the instant to compare this date to * @return true if the instance is strictly before the argument when ordering chronologically * @see #isBeforeOrEqualTo(FieldTimeStamped) * @since 10.1 */ public boolean isBefore(final FieldTimeStamped other) { return this.compareTo(other.getDate()) < 0; } /** Check if the instance represents a time that is strictly after another. * @param other the instant to compare this date to * @return true if the instance is strictly after the argument when ordering chronologically * @see #isAfterOrEqualTo(FieldTimeStamped) * @since 10.1 */ public boolean isAfter(final FieldTimeStamped other) { return this.compareTo(other.getDate()) > 0; } /** Check if the instance represents a time that is before or equal to another. * @param other the instant to compare this date to * @return true if the instance is before (or equal to) the argument when ordering chronologically * @see #isBefore(FieldTimeStamped) * @since 10.1 */ public boolean isBeforeOrEqualTo(final FieldTimeStamped other) { return this.isEqualTo(other) || this.isBefore(other); } /** Check if the instance represents a time that is after or equal to another. * @param other the instant to compare this date to * @return true if the instance is after (or equal to) the argument when ordering chronologically * @see #isAfterOrEqualTo(FieldTimeStamped) * @since 10.1 */ public boolean isAfterOrEqualTo(final FieldTimeStamped other) { return this.isEqualTo(other) || this.isAfter(other); } /** Check if the instance represents a time that is strictly between two others representing * the boundaries of a time span. The two boundaries can be provided in any order: in other words, * whether boundary represents a time that is before or after otherBoundary will * not change the result of this method. * @param boundary one end of the time span * @param otherBoundary the other end of the time span * @return true if the instance is strictly between the two arguments when ordering chronologically * @see #isBetweenOrEqualTo(FieldTimeStamped, FieldTimeStamped) * @since 10.1 */ public boolean isBetween(final FieldTimeStamped boundary, final FieldTimeStamped otherBoundary) { final FieldTimeStamped beginning; final FieldTimeStamped end; if (boundary.getDate().isBefore(otherBoundary)) { beginning = boundary; end = otherBoundary; } else { beginning = otherBoundary; end = boundary; } return this.isAfter(beginning) && this.isBefore(end); } /** Check if the instance represents a time that is between two others representing * the boundaries of a time span, or equal to one of them. The two boundaries can be provided in any order: * in other words, whether boundary represents a time that is before or after * otherBoundary will not change the result of this method. * @param boundary one end of the time span * @param otherBoundary the other end of the time span * @return true if the instance is between the two arguments (or equal to at least one of them) * when ordering chronologically * @see #isBetween(FieldTimeStamped, FieldTimeStamped) * @since 10.1 */ public boolean isBetweenOrEqualTo(final FieldTimeStamped boundary, final FieldTimeStamped otherBoundary) { return this.isEqualTo(boundary) || this.isEqualTo(otherBoundary) || this.isBetween(boundary, otherBoundary); } /** Get a hashcode for this date. * @return hashcode */ public int hashCode() { final long l = Double.doubleToLongBits(durationFrom(AbsoluteDate.ARBITRARY_EPOCH).getReal()); return (int) (l ^ (l >>> 32)); } /** * Get a String representation of the instant location with up to 16 digits of * precision for the seconds value. * *

Since this method is used in exception messages and error handling every * effort is made to return some representation of the instant. If UTC is available * from the default data context then it is used to format the string in UTC. If not * then TAI is used. Finally if the prior attempts fail this method falls back to * converting this class's internal representation to a string. * *

This method uses the {@link DataContext#getDefault() default data context}. * * @return a string representation of the instance, in ISO-8601 format if UTC is * available from the default data context. * @see AbsoluteDate#toString() * @see #toString(TimeScale) * @see DateTimeComponents#toString(int, int) */ @DefaultDataContext public String toString() { return toAbsoluteDate().toString(); } /** * Get a String representation of the instant location in ISO-8601 format without the * UTC offset and with up to 16 digits of precision for the seconds value. * * @param timeScale time scale to use * @return a string representation of the instance. * @see DateTimeComponents#toString(int, int) */ public String toString(final TimeScale timeScale) { return getComponents(timeScale).toStringWithoutUtcOffset(); } /** Get a String representation of the instant location for a local time. * *

This method uses the {@link DataContext#getDefault() default data context}. * * @param minutesFromUTC offset in minutes from UTC (positive Eastwards UTC, * negative Westward UTC). * @return string representation of the instance, * in ISO-8601 format with milliseconds accuracy * @see #toString(int, TimeScale) */ @DefaultDataContext public String toString(final int minutesFromUTC) { return toString(minutesFromUTC, DataContext.getDefault().getTimeScales().getUTC()); } /** * Get a String representation of the instant location for a local time. * * @param minutesFromUTC offset in minutes from UTC (positive Eastwards UTC, * negative Westward UTC). * @param utc time scale used to compute date and time components. * @return string representation of the instance, in ISO-8601 format with milliseconds * accuracy * @since 10.1 */ public String toString(final int minutesFromUTC, final TimeScale utc) { final int minuteDuration = utc.minuteDuration(this); return getComponents(minutesFromUTC, utc).toString(minuteDuration); } /** Get a String representation of the instant location for a time zone. * *

This method uses the {@link DataContext#getDefault() default data context}. * * @param timeZone time zone * @return string representation of the instance, * in ISO-8601 format with milliseconds accuracy * @see #toString(TimeZone, TimeScale) */ @DefaultDataContext public String toString(final TimeZone timeZone) { return toString(timeZone, DataContext.getDefault().getTimeScales().getUTC()); } /** * Get a String representation of the instant location for a time zone. * * @param timeZone time zone * @param utc time scale used to compute date and time components. * @return string representation of the instance, in ISO-8601 format with milliseconds * accuracy * @since 10.1 */ public String toString(final TimeZone timeZone, final TimeScale utc) { final int minuteDuration = utc.minuteDuration(this); return getComponents(timeZone, utc).toString(minuteDuration); } /** Get a time-shifted date. *

* Calling this method is equivalent to call new AbsoluteDate(this, dt). *

* @param dt time shift in seconds * @return a new date, shifted with respect to instance (which is immutable) * @see org.orekit.utils.PVCoordinates#shiftedBy(double) * @see org.orekit.attitudes.Attitude#shiftedBy(double) * @see org.orekit.orbits.Orbit#shiftedBy(double) * @see org.orekit.propagation.SpacecraftState#shiftedBy(double) */ @Override public FieldAbsoluteDate shiftedBy(final double dt) { return new FieldAbsoluteDate<>(this, dt); } /** Transform the FieldAbsoluteDate in an AbsoluteDate. * @return AbsoluteDate of the FieldObject * */ public AbsoluteDate toAbsoluteDate() { return new AbsoluteDate(epoch, offset.getReal()); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy