All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.orekit.time.UTCScale Maven / Gradle / Ivy

Go to download

OREKIT (ORbits Extrapolation KIT) is a low level space dynamics library. It provides basic elements (orbits, dates, attitude, frames ...) and various algorithms to handle them (conversions, analytical and numerical propagation, pointing ...).

There is a newer version: 12.2
Show newest version
/* Copyright 2002-2022 CS GROUP
 * Licensed to CS GROUP (CS) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * CS licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.orekit.time;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Comparator;
import java.util.List;

import org.hipparchus.CalculusFieldElement;
import org.hipparchus.util.FastMath;
import org.orekit.annotation.DefaultDataContext;
import org.orekit.data.DataContext;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitInternalError;
import org.orekit.utils.Constants;

/** Coordinated Universal Time.
 * 

UTC is related to TAI using step adjustments from time to time * according to IERS (International Earth Rotation Service) rules. Before 1972, * these adjustments were piecewise linear offsets. Since 1972, these adjustments * are piecewise constant offsets, which require introduction of leap seconds.

*

Leap seconds are always inserted as additional seconds at the last minute * of the day, pushing the next day forward. Such minutes are therefore more * than 60 seconds long. In theory, there may be seconds removal instead of seconds * insertion, but up to now (2010) it has never been used. As an example, when a * one second leap was introduced at the end of 2005, the UTC time sequence was * 2005-12-31T23:59:59 UTC, followed by 2005-12-31T23:59:60 UTC, followed by * 2006-01-01T00:00:00 UTC.

*

This is intended to be accessed thanks to {@link TimeScales}, * so there is no public constructor.

* @author Luc Maisonobe * @see AbsoluteDate */ public class UTCScale implements TimeScale { /** Serializable UID. */ private static final long serialVersionUID = 20150402L; /** UTC-TAI offsets. */ private UTCTAIOffset[] offsets; /** Package private constructor for the factory. * Used to create the prototype instance of this class that is used to * clone all subsequent instances of {@link UTCScale}. Initializes the offset * table that is shared among all instances. * @param tai TAI time scale this UTC time scale references. * @param offsets UTC-TAI offsets */ UTCScale(final TimeScale tai, final Collection offsets) { // copy input so the original list is unmodified final List offsetModels = new ArrayList<>(offsets); offsetModels.sort(Comparator.comparing(OffsetModel::getStart)); if (offsetModels.get(0).getStart().getYear() > 1968) { // the pre-1972 linear offsets are missing, add them manually // excerpt from UTC-TAI.history file: // 1961 Jan. 1 - 1961 Aug. 1 1.422 818 0s + (MJD - 37 300) x 0.001 296s // Aug. 1 - 1962 Jan. 1 1.372 818 0s + "" // 1962 Jan. 1 - 1963 Nov. 1 1.845 858 0s + (MJD - 37 665) x 0.001 123 2s // 1963 Nov. 1 - 1964 Jan. 1 1.945 858 0s + "" // 1964 Jan. 1 - April 1 3.240 130 0s + (MJD - 38 761) x 0.001 296s // April 1 - Sept. 1 3.340 130 0s + "" // Sept. 1 - 1965 Jan. 1 3.440 130 0s + "" // 1965 Jan. 1 - March 1 3.540 130 0s + "" // March 1 - Jul. 1 3.640 130 0s + "" // Jul. 1 - Sept. 1 3.740 130 0s + "" // Sept. 1 - 1966 Jan. 1 3.840 130 0s + "" // 1966 Jan. 1 - 1968 Feb. 1 4.313 170 0s + (MJD - 39 126) x 0.002 592s // 1968 Feb. 1 - 1972 Jan. 1 4.213 170 0s + "" offsetModels.add( 0, new OffsetModel(new DateComponents(1961, 1, 1), 37300, 1.4228180, 0.0012960)); offsetModels.add( 1, new OffsetModel(new DateComponents(1961, 8, 1), 37300, 1.3728180, 0.0012960)); offsetModels.add( 2, new OffsetModel(new DateComponents(1962, 1, 1), 37665, 1.8458580, 0.0011232)); offsetModels.add( 3, new OffsetModel(new DateComponents(1963, 11, 1), 37665, 1.9458580, 0.0011232)); offsetModels.add( 4, new OffsetModel(new DateComponents(1964, 1, 1), 38761, 3.2401300, 0.0012960)); offsetModels.add( 5, new OffsetModel(new DateComponents(1964, 4, 1), 38761, 3.3401300, 0.0012960)); offsetModels.add( 6, new OffsetModel(new DateComponents(1964, 9, 1), 38761, 3.4401300, 0.0012960)); offsetModels.add( 7, new OffsetModel(new DateComponents(1965, 1, 1), 38761, 3.5401300, 0.0012960)); offsetModels.add( 8, new OffsetModel(new DateComponents(1965, 3, 1), 38761, 3.6401300, 0.0012960)); offsetModels.add( 9, new OffsetModel(new DateComponents(1965, 7, 1), 38761, 3.7401300, 0.0012960)); offsetModels.add(10, new OffsetModel(new DateComponents(1965, 9, 1), 38761, 3.8401300, 0.0012960)); offsetModels.add(11, new OffsetModel(new DateComponents(1966, 1, 1), 39126, 4.3131700, 0.0025920)); offsetModels.add(12, new OffsetModel(new DateComponents(1968, 2, 1), 39126, 4.2131700, 0.0025920)); } // create cache this.offsets = new UTCTAIOffset[offsetModels.size()]; UTCTAIOffset previous = null; // link the offsets together for (int i = 0; i < offsetModels.size(); ++i) { final OffsetModel o = offsetModels.get(i); final DateComponents date = o.getStart(); final int mjdRef = o.getMJDRef(); final double offset = o.getOffset(); final double slope = o.getSlope(); // start of the leap final double previousOffset = (previous == null) ? 0.0 : previous.getOffset(date, TimeComponents.H00); final AbsoluteDate leapStart = new AbsoluteDate(date, tai).shiftedBy(previousOffset); // end of the leap final double startOffset = offset + slope * (date.getMJD() - mjdRef); final AbsoluteDate leapEnd = new AbsoluteDate(date, tai).shiftedBy(startOffset); // leap computed at leap start and in UTC scale final double normalizedSlope = slope / Constants.JULIAN_DAY; final double leap = leapEnd.durationFrom(leapStart) / (1 + normalizedSlope); final AbsoluteDate reference = AbsoluteDate.createMJDDate(mjdRef, 0, tai) .shiftedBy(offset); previous = new UTCTAIOffset(leapStart, date.getMJD(), leap, offset, mjdRef, normalizedSlope, reference); this.offsets[i] = previous; } } /** * Returns the UTC-TAI offsets underlying this UTC scale. *

* Modifications to the returned list will not affect this UTC scale instance. * @return new non-null modifiable list of UTC-TAI offsets time-sorted from * earliest to latest */ public List getUTCTAIOffsets() { final List offsetList = new ArrayList<>(offsets.length); for (int i = 0; i < offsets.length; ++i) { offsetList.add(offsets[i]); } return offsetList; } /** {@inheritDoc} */ @Override public double offsetFromTAI(final AbsoluteDate date) { final int offsetIndex = findOffsetIndex(date); if (offsetIndex < 0) { // the date is before the first known leap return 0; } else { return -offsets[offsetIndex].getOffset(date); } } /** {@inheritDoc} */ @Override public > T offsetFromTAI(final FieldAbsoluteDate date) { final int offsetIndex = findOffsetIndex(date.toAbsoluteDate()); if (offsetIndex < 0) { // the date is before the first known leap return date.getField().getZero(); } else { return offsets[offsetIndex].getOffset(date).negate(); } } /** {@inheritDoc} */ @Override public double offsetToTAI(final DateComponents date, final TimeComponents time) { // take offset from local time into account, but ignoring seconds, // so when we parse an hour like 23:59:60.5 during leap seconds introduction, // we do not jump to next day final int minuteInDay = time.getHour() * 60 + time.getMinute() - time.getMinutesFromUTC(); final int correction = minuteInDay < 0 ? (minuteInDay - 1439) / 1440 : minuteInDay / 1440; // find close neighbors, assuming date in TAI, i.e a date earlier than real UTC date final int mjd = date.getMJD() + correction; final UTCTAIOffset offset = findOffset(mjd); if (offset == null) { // the date is before the first known leap return 0; } else { return offset.getOffset(date, time); } } /** {@inheritDoc} */ public String getName() { return "UTC"; } /** {@inheritDoc} */ public String toString() { return getName(); } /** Get the date of the first known leap second. * @return date of the first known leap second */ public AbsoluteDate getFirstKnownLeapSecond() { return offsets[0].getDate(); } /** Get the date of the last known leap second. * @return date of the last known leap second */ public AbsoluteDate getLastKnownLeapSecond() { return offsets[offsets.length - 1].getDate(); } /** {@inheritDoc} */ @Override public boolean insideLeap(final AbsoluteDate date) { final int offsetIndex = findOffsetIndex(date); if (offsetIndex < 0) { // the date is before the first known leap return false; } else { return date.compareTo(offsets[offsetIndex].getValidityStart()) < 0; } } /** {@inheritDoc} */ @Override public > boolean insideLeap(final FieldAbsoluteDate date) { return insideLeap(date.toAbsoluteDate()); } /** {@inheritDoc} */ @Override public int minuteDuration(final AbsoluteDate date) { final int offsetIndex = findOffsetIndex(date); final UTCTAIOffset offset; if (offsetIndex >= 0 && date.compareTo(offsets[offsetIndex].getValidityStart()) < 0) { // the date is during the leap itself offset = offsets[offsetIndex]; } else if (offsetIndex + 1 < offsets.length && offsets[offsetIndex + 1].getDate().durationFrom(date) <= 60.0) { // the date is after a leap, but it may be just before the next one // the next leap will start in one minute, it will extend the current minute offset = offsets[offsetIndex + 1]; } else { offset = null; } if (offset != null) { // since this method returns an int we can't return the precise duration in // all cases, but we can bound it. Some leaps are more than 1s. See #694 return 60 + (int) FastMath.ceil(offset.getLeap()); } // no leap is expected within the next minute return 60; } /** {@inheritDoc} */ @Override public > int minuteDuration(final FieldAbsoluteDate date) { return minuteDuration(date.toAbsoluteDate()); } /** {@inheritDoc} */ @Override public double getLeap(final AbsoluteDate date) { final int offsetIndex = findOffsetIndex(date); if (offsetIndex < 0) { // the date is before the first known leap return 0; } else { return offsets[offsetIndex].getLeap(); } } /** {@inheritDoc} */ @Override public > T getLeap(final FieldAbsoluteDate date) { return date.getField().getZero().add(getLeap(date.toAbsoluteDate())); } /** Find the index of the offset valid at some date. * @param date date at which offset is requested * @return index of the offset valid at this date, or -1 if date is before first offset. */ private int findOffsetIndex(final AbsoluteDate date) { int inf = 0; int sup = offsets.length; while (sup - inf > 1) { final int middle = (inf + sup) >>> 1; if (date.compareTo(offsets[middle].getDate()) < 0) { sup = middle; } else { inf = middle; } } if (sup == offsets.length) { // the date is after the last known leap second return offsets.length - 1; } else if (date.compareTo(offsets[inf].getDate()) < 0) { // the date is before the first known leap return -1; } else { return inf; } } /** Find the offset valid at some date. * @param mjd Modified Julian Day of the date at which offset is requested * @return offset valid at this date, or null if date is before first offset. */ private UTCTAIOffset findOffset(final int mjd) { int inf = 0; int sup = offsets.length; while (sup - inf > 1) { final int middle = (inf + sup) >>> 1; if (mjd < offsets[middle].getMJD()) { sup = middle; } else { inf = middle; } } if (sup == offsets.length) { // the date is after the last known leap second return offsets[offsets.length - 1]; } else if (mjd < offsets[inf].getMJD()) { // the date is before the first known leap return null; } else { return offsets[inf]; } } /** Replace the instance with a data transfer object for serialization. * @return data transfer object that will be serialized */ @DefaultDataContext private Object writeReplace() { return new DataTransferObject(); } /** Internal class used only for serialization. */ @DefaultDataContext private static class DataTransferObject implements Serializable { /** Serializable UID. */ private static final long serialVersionUID = 20131209L; /** Replace the deserialized data transfer object with a {@link UTCScale}. * @return replacement {@link UTCScale} */ private Object readResolve() { try { return DataContext.getDefault().getTimeScales().getUTC(); } catch (OrekitException oe) { throw new OrekitInternalError(oe); } } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy