All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.orekit.gnss.DOPComputer Maven / Gradle / Ivy

Go to download

OREKIT (ORbits Extrapolation KIT) is a low level space dynamics library. It provides basic elements (orbits, dates, attitude, frames ...) and various algorithms to handle them (conversions, analytical and numerical propagation, pointing ...).

There is a newer version: 12.2
Show newest version
/* Copyright 2002-2024 CS GROUP
 * Licensed to CS GROUP (CS) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * CS licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.orekit.gnss;

import java.util.List;

import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.linear.MatrixUtils;
import org.hipparchus.linear.RealMatrix;
import org.hipparchus.util.FastMath;
import org.orekit.bodies.GeodeticPoint;
import org.orekit.bodies.OneAxisEllipsoid;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitMessages;
import org.orekit.frames.TopocentricFrame;
import org.orekit.propagation.Propagator;
import org.orekit.time.AbsoluteDate;
import org.orekit.utils.ElevationMask;
import org.orekit.utils.TrackingCoordinates;

/**
 * This class aims at computing the dilution of precision.
 *
 * @author Pascal Parraud
 * @since 8.0
 * @see Dilution of precision
 */
public class DOPComputer {

    // Constants
    /** Minimum elevation : 0°. */
    public static final double DOP_MIN_ELEVATION = 0.;

    /** Minimum number of propagators for DOP computation. */
    private static final int DOP_MIN_PROPAGATORS = 4;

    // Fields
    /** The location as a topocentric frame. */
    private final TopocentricFrame frame;

    /** Elevation mask used for computation, if defined. */
    private final ElevationMask elevationMask;

    /** Minimum elevation value used if no mask is defined. */
    private final double minElevation;

    /**
     * Constructor for DOP computation.
     *
     * @param frame the topocentric frame linked to the locations where DOP will be computed
     * @param minElev the minimum elevation to consider (rad)
     * @param elevMask the elevation mask to consider
     */
    private DOPComputer(final TopocentricFrame frame, final double minElev, final ElevationMask elevMask) {
        // Set the topocentric frame
        this.frame = frame;
        // Set the min elevation
        this.minElevation = minElev;
        // Set the elevation mask
        this.elevationMask = elevMask;
    }

    /**
     * Creates a DOP computer for one location.
     *
     * 

A minimum elevation of 0° is taken into account to compute * visibility between the location and the GNSS spacecrafts.

* * @param shape the body shape on which the location is defined * @param location the point of interest * @return a configured DOP computer */ public static DOPComputer create(final OneAxisEllipsoid shape, final GeodeticPoint location) { return new DOPComputer(new TopocentricFrame(shape, location, "Location"), DOP_MIN_ELEVATION, null); } /** * Set the minimum elevation. * *

This will override an elevation mask if it has been configured as such previously.

* * @param newMinElevation minimum elevation for visibility (rad) * @return a new DOP computer with updated configuration (the instance is not changed) * * @see #getMinElevation() */ public DOPComputer withMinElevation(final double newMinElevation) { return new DOPComputer(frame, newMinElevation, null); } /** * Set the elevation mask. * *

This will override the min elevation if it has been configured as such previously.

* * @param newElevationMask elevation mask to use for the computation * @return a new detector with updated configuration (the instance is not changed) * * @see #getElevationMask() */ public DOPComputer withElevationMask(final ElevationMask newElevationMask) { return new DOPComputer(frame, DOP_MIN_ELEVATION, newElevationMask); } /** * Compute the {@link DOP} at a given date for a set of GNSS spacecrafts. *

Four GNSS spacecraft at least are needed to compute the DOP. * If less than 4 propagators are provided, an exception will be thrown. * If less than 4 spacecrafts are visible at the date, all DOP values will be * set to {@link java.lang.Double#NaN NaN}.

* * @param date the computation date * @param gnss the propagators for GNSS spacecraft involved in the DOP computation * @return the {@link DOP} at the location */ public DOP compute(final AbsoluteDate date, final List gnss) { // Checks the number of provided propagators if (gnss.size() < DOP_MIN_PROPAGATORS) { throw new OrekitException(OrekitMessages.NOT_ENOUGH_GNSS_FOR_DOP, gnss.size(), DOP_MIN_PROPAGATORS); } // Initializes DOP values double gdop = Double.NaN; double pdop = Double.NaN; double hdop = Double.NaN; double vdop = Double.NaN; double tdop = Double.NaN; // Loop over the propagators of GNSS orbits final double[][] satDir = new double[gnss.size()][4]; int satNb = 0; for (Propagator prop : gnss) { final Vector3D pos = prop.getPosition(date, frame); final TrackingCoordinates tc = frame.getTrackingCoordinates(pos, frame, date); final double elMin = (elevationMask != null) ? elevationMask.getElevation(tc.getAzimuth()) : minElevation; // Only visible satellites are considered if (tc.getElevation() > elMin) { // Create the rows of the H matrix final Vector3D r = pos.normalize(); satDir[satNb][0] = r.getX(); satDir[satNb][1] = r.getY(); satDir[satNb][2] = r.getZ(); satDir[satNb][3] = -1.; satNb++; } } // DOP values are computed only if at least 4 SV are visible from the location if (satNb > 3) { // Construct matrix H final RealMatrix h = MatrixUtils.createRealMatrix(satNb, 4); for (int k = 0; k < satNb; k++) { h.setRow(k, satDir[k]); } // Compute the pseudo-inverse of H final RealMatrix hInv = MatrixUtils.inverse(h.transpose().multiply(h)); final double sx2 = hInv.getEntry(0, 0); final double sy2 = hInv.getEntry(1, 1); final double sz2 = hInv.getEntry(2, 2); final double st2 = hInv.getEntry(3, 3); // Extract various DOP : GDOP, PDOP, HDOP, VDOP, TDOP gdop = FastMath.sqrt(hInv.getTrace()); pdop = FastMath.sqrt(sx2 + sy2 + sz2); hdop = FastMath.sqrt(sx2 + sy2); vdop = FastMath.sqrt(sz2); tdop = FastMath.sqrt(st2); } // Return all the DOP values return new DOP(frame.getPoint(), date, satNb, gdop, pdop, hdop, vdop, tdop); } /** * Get the minimum elevation. * * @return the minimum elevation (rad) */ public double getMinElevation() { return minElevation; } /** * Get the elevation mask. * * @return the elevation mask */ public ElevationMask getElevationMask() { return elevationMask; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy