org.orekit.utils.FieldLegendrePolynomials Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of orekit Show documentation
Show all versions of orekit Show documentation
OREKIT (ORbits Extrapolation KIT) is a low level space dynamics library.
It provides basic elements (orbits, dates, attitude, frames ...) and
various algorithms to handle them (conversions, analytical and numerical
propagation, pointing ...).
/* Copyright 2002-2024 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.utils;
import org.hipparchus.Field;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.util.CombinatoricsUtils;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathArrays;
/**
* Computes the Pnm(t) coefficients.
*
* The computation of the Legendre polynomials is performed following:
* Heiskanen and Moritz, Physical Geodesy, 1967, eq. 1-62
*
* @since 11.0
* @author Bryan Cazabonne
* @param type of the field elements
*/
public class FieldLegendrePolynomials> {
/** Array for the Legendre polynomials. */
private T[][] pCoef;
/** Create Legendre polynomials for the given degree and order.
* @param degree degree of the spherical harmonics
* @param order order of the spherical harmonics
* @param t argument for polynomials calculation
*/
public FieldLegendrePolynomials(final int degree, final int order,
final T t) {
// Field
final Field field = t.getField();
// Initialize array
this.pCoef = MathArrays.buildArray(field, degree + 1, order + 1);
final T t2 = t.multiply(t);
for (int n = 0; n <= degree; n++) {
// m shall be <= n (Heiskanen and Moritz, 1967, pp 21)
for (int m = 0; m <= FastMath.min(n, order); m++) {
// r = int((n - m) / 2)
final int r = (int) (n - m) / 2;
T sum = field.getZero();
for (int k = 0; k <= r; k++) {
final T term = FastMath.pow(t, n - m - 2 * k).
multiply(FastMath.pow(-1.0, k) * CombinatoricsUtils.factorialDouble(2 * n - 2 * k) /
(CombinatoricsUtils.factorialDouble(k) * CombinatoricsUtils.factorialDouble(n - k) *
CombinatoricsUtils.factorialDouble(n - m - 2 * k)));
sum = sum.add(term);
}
pCoef[n][m] = FastMath.pow(t2.negate().add(1.0), 0.5 * m).multiply(FastMath.pow(2, -n)).multiply(sum);
}
}
}
/** Return the coefficient Pnm.
* @param n index
* @param m index
* @return The coefficient Pnm
*/
public T getPnm(final int n, final int m) {
return pCoef[n][m];
}
}