org.orekit.attitudes.TabulatedLofOffset Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of orekit Show documentation
Show all versions of orekit Show documentation
OREKIT (ORbits Extrapolation KIT) is a low level space dynamics library.
It provides basic elements (orbits, dates, attitude, frames ...) and
various algorithms to handle them (conversions, analytical and numerical
propagation, pointing ...).
/* Copyright 2002-2024 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.attitudes;
import java.util.List;
import java.util.stream.Collectors;
import org.hipparchus.CalculusFieldElement;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitMessages;
import org.orekit.frames.FieldTransform;
import org.orekit.frames.Frame;
import org.orekit.frames.LOF;
import org.orekit.frames.Transform;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.time.FieldTimeInterpolator;
import org.orekit.time.TimeInterpolator;
import org.orekit.utils.AngularDerivativesFilter;
import org.orekit.utils.FieldPVCoordinates;
import org.orekit.utils.FieldPVCoordinatesProvider;
import org.orekit.utils.ImmutableTimeStampedCache;
import org.orekit.utils.PVCoordinates;
import org.orekit.utils.PVCoordinatesProvider;
import org.orekit.utils.TimeStampedAngularCoordinates;
import org.orekit.utils.TimeStampedAngularCoordinatesHermiteInterpolator;
import org.orekit.utils.TimeStampedFieldAngularCoordinates;
import org.orekit.utils.TimeStampedFieldAngularCoordinatesHermiteInterpolator;
/**
* This class handles an attitude provider interpolating from a predefined table
* containing offsets from a Local Orbital Frame.
* Instances of this class are guaranteed to be immutable.
* @see LofOffset
* @see TabulatedProvider
* @author Luc Maisonobe
* @since 7.1
*/
public class TabulatedLofOffset implements BoundedAttitudeProvider {
/** Inertial frame with respect to which orbit should be computed. */
private final Frame inertialFrame;
/** Local Orbital Frame. */
private final LOF type;
/** Cached attitude table. */
private final transient ImmutableTimeStampedCache extends TimeStampedAngularCoordinates> table;
/** Filter for derivatives from the sample to use in interpolation. */
private final AngularDerivativesFilter filter;
/** First date of the range. */
private final AbsoluteDate minDate;
/** Last date of the range. */
private final AbsoluteDate maxDate;
/** Creates new instance.
*
* This constructor uses the first and last point samples as the min and max dates.
*
* @param inertialFrame inertial frame with respect to which orbit should be computed
* @param lof local orbital frame
* @param table tabulated attitudes
* @param n number of attitude to use for interpolation
* @param filter filter for derivatives from the sample to use in interpolation
*/
public TabulatedLofOffset(final Frame inertialFrame, final LOF lof,
final List extends TimeStampedAngularCoordinates> table,
final int n, final AngularDerivativesFilter filter) {
this(inertialFrame, lof, table, n, filter, table.get(0).getDate(), table.get(table.size() - 1).getDate());
}
/** Creates new instance.
* @param inertialFrame inertial frame with respect to which orbit should be computed
* @param lof local orbital frame
* @param table tabulated attitudes
* @param n number of attitude to use for interpolation
* @param minDate min date to use
* @param maxDate max date to use
* @param filter filter for derivatives from the sample to use in interpolation
* @since 11.0
*/
public TabulatedLofOffset(final Frame inertialFrame, final LOF lof,
final List extends TimeStampedAngularCoordinates> table,
final int n, final AngularDerivativesFilter filter,
final AbsoluteDate minDate, final AbsoluteDate maxDate) {
if (!inertialFrame.isPseudoInertial()) {
throw new OrekitException(OrekitMessages.NON_PSEUDO_INERTIAL_FRAME,
inertialFrame.getName());
}
this.inertialFrame = inertialFrame;
this.type = lof;
this.table = new ImmutableTimeStampedCache(n, table);
this.filter = filter;
this.minDate = minDate;
this.maxDate = maxDate;
}
/** Get an unmodifiable view of the tabulated attitudes.
* @return unmodifiable view of the tabulated attitudes
*/
public List extends TimeStampedAngularCoordinates> getTable() {
return table.getAll();
}
/** {@inheritDoc} */
public Attitude getAttitude(final PVCoordinatesProvider pvProv,
final AbsoluteDate date, final Frame frame) {
// get attitudes sample on which interpolation will be performed
final List sample = table.getNeighbors(date).collect(Collectors.toList());
// create interpolator
final TimeInterpolator interpolator =
new TimeStampedAngularCoordinatesHermiteInterpolator(sample.size(), filter);
// interpolate
final TimeStampedAngularCoordinates interpolated = interpolator.interpolate(date, sample);
// construction of the local orbital frame, using PV from inertial frame
final PVCoordinates pv = pvProv.getPVCoordinates(date, inertialFrame);
final Transform inertialToLof = type.transformFromInertial(date, pv);
// take into account the specified start frame (which may not be an inertial one)
final Transform frameToInertial = frame.getTransformTo(inertialFrame, date);
final Transform frameToLof = new Transform(date, frameToInertial, inertialToLof);
// compose with interpolated rotation
return new Attitude(date, frame,
interpolated.addOffset(frameToLof.getAngular()));
}
/** {@inheritDoc} */
public > FieldAttitude getAttitude(final FieldPVCoordinatesProvider pvProv,
final FieldAbsoluteDate date,
final Frame frame) {
// get attitudes sample on which interpolation will be performed
final List> sample =
table.
getNeighbors(date.toAbsoluteDate()).
map(ac -> new TimeStampedFieldAngularCoordinates<>(date.getField(), ac)).
collect(Collectors.toList());
// create interpolator
final FieldTimeInterpolator, T> interpolator =
new TimeStampedFieldAngularCoordinatesHermiteInterpolator<>(sample.size(), filter);
// interpolate
final TimeStampedFieldAngularCoordinates interpolated = interpolator.interpolate(date, sample);
// construction of the local orbital frame, using PV from inertial frame
final FieldPVCoordinates pv = pvProv.getPVCoordinates(date, inertialFrame);
final FieldTransform inertialToLof = type.transformFromInertial(date, pv);
// take into account the specified start frame (which may not be an inertial one)
final FieldTransform frameToInertial = frame.getTransformTo(inertialFrame, date);
final FieldTransform frameToLof = new FieldTransform<>(date, frameToInertial, inertialToLof);
// compose with interpolated rotation
return new FieldAttitude<>(date, frame,
interpolated.addOffset(frameToLof.getAngular()));
}
/** {@inheritDoc} */
public AbsoluteDate getMinDate() {
return minDate;
}
/** {@inheritDoc} */
public AbsoluteDate getMaxDate() {
return maxDate;
}
}