org.orekit.attitudes.YawCompensation Maven / Gradle / Ivy
Show all versions of orekit Show documentation
/* Copyright 2002-2024 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.attitudes;
import org.hipparchus.Field;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.geometry.euclidean.threed.FieldRotation;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Rotation;
import org.hipparchus.geometry.euclidean.threed.RotationConvention;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.orekit.frames.FieldTransform;
import org.orekit.frames.Frame;
import org.orekit.frames.Transform;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.utils.FieldPVCoordinates;
import org.orekit.utils.FieldPVCoordinatesProvider;
import org.orekit.utils.PVCoordinates;
import org.orekit.utils.PVCoordinatesProvider;
import org.orekit.utils.TimeStampedAngularCoordinates;
import org.orekit.utils.TimeStampedFieldAngularCoordinates;
/**
* This class handles yaw compensation attitude provider.
*
* Yaw compensation is mainly used for Earth observation satellites. As a
* satellites moves along its track, the image of ground points move on
* the focal point of the optical sensor. This motion is a combination of
* the satellite motion, but also on the Earth rotation and on the current
* attitude (in particular if the pointing includes Roll or Pitch offset).
* In order to reduce geometrical distortion, the yaw angle is changed a
* little from the simple ground pointing attitude such that the apparent
* motion of ground points is along a prescribed axis (orthogonal to the
* optical sensors rows), taking into account all effects.
*
*
* This attitude is implemented as a wrapper on top of an underlying ground
* pointing law that defines the roll and pitch angles.
*
*
* Instances of this class are guaranteed to be immutable.
*
* @see GroundPointing
* @author Véronique Pommier-Maurussane
*/
public class YawCompensation extends GroundPointingAttitudeModifier implements AttitudeProviderModifier {
/** J axis. */
private static final PVCoordinates PLUS_J =
new PVCoordinates(Vector3D.PLUS_J, Vector3D.ZERO, Vector3D.ZERO);
/** K axis. */
private static final PVCoordinates PLUS_K =
new PVCoordinates(Vector3D.PLUS_K, Vector3D.ZERO, Vector3D.ZERO);
/** Creates a new instance.
* @param inertialFrame frame in which orbital velocities are computed
* @param groundPointingLaw ground pointing attitude provider without yaw compensation
* @since 7.1
*/
public YawCompensation(final Frame inertialFrame, final GroundPointing groundPointingLaw) {
super(inertialFrame, groundPointingLaw.getBodyFrame(), groundPointingLaw);
}
/** {@inheritDoc} */
@Override
public Attitude getAttitude(final PVCoordinatesProvider pvProv,
final AbsoluteDate date, final Frame frame) {
final Transform bodyToRef = getBodyFrame().getTransformTo(frame, date);
// compute sliding target ground point
final PVCoordinates slidingRef = getTargetPV(pvProv, date, frame);
final PVCoordinates slidingBody = bodyToRef.getInverse().transformPVCoordinates(slidingRef);
// compute relative position of sliding ground point with respect to satellite
final PVCoordinates relativePosition =
new PVCoordinates(pvProv.getPVCoordinates(date, frame), slidingRef);
// compute relative velocity of fixed ground point with respect to sliding ground point
// the velocity part of the transformPVCoordinates for the sliding point ps
// from body frame to reference frame is:
// d(ps_ref)/dt = r(d(ps_body)/dt + dq/dt) - Ω ⨯ ps_ref
// where r is the rotation part of the transform, Ω is the corresponding
// angular rate, and dq/dt is the derivative of the translation part of the
// transform (the translation itself, without derivative, is hidden in the
// ps_ref part in the cross product).
// The sliding point ps is co-located to a fixed ground point pf (i.e. they have the
// same position at time of computation), but this fixed point as zero velocity
// with respect to the ground. So the velocity part of the transformPVCoordinates
// for this fixed point can be computed using the same formula as above:
// from body frame to reference frame is:
// d(pf_ref)/dt = r(0 + dq/dt) - Ω ⨯ pf_ref
// so remembering that the two points are at the same location at computation time,
// i.e. that at t=0 pf_ref=ps_ref, the relative velocity between the fixed point
// and the sliding point is given by the simple expression:
// d(ps_ref)/dt - d(pf_ref)/dt = r(d(ps_body)/dt)
// the acceleration is computed by differentiating the expression, which gives:
// d²(ps_ref)/dt² - d²(pf_ref)/dt² = r(d²(ps_body)/dt²) - Ω ⨯ [d(ps_ref)/dt - d(pf_ref)/dt]
final Vector3D v = bodyToRef.getRotation().applyTo(slidingBody.getVelocity());
final Vector3D a = new Vector3D(+1, bodyToRef.getRotation().applyTo(slidingBody.getAcceleration()),
-1, Vector3D.crossProduct(bodyToRef.getRotationRate(), v));
final PVCoordinates relativeVelocity = new PVCoordinates(v, a, Vector3D.ZERO);
final PVCoordinates relativeNormal =
PVCoordinates.crossProduct(relativePosition, relativeVelocity).normalize();
// attitude definition :
// . Z satellite axis points to sliding target
// . target relative velocity is in (Z, X) plane, in the -X half plane part
return new Attitude(frame,
new TimeStampedAngularCoordinates(date,
relativePosition.normalize(),
relativeNormal.normalize(),
PLUS_K, PLUS_J,
1.0e-9));
}
/** {@inheritDoc} */
@Override
public > FieldAttitude getAttitude(final FieldPVCoordinatesProvider pvProv,
final FieldAbsoluteDate date, final Frame frame) {
final Field field = date.getField();
final FieldVector3D zero = FieldVector3D.getZero(field);
final FieldPVCoordinates plusJ = new FieldPVCoordinates<>(FieldVector3D.getPlusJ(field), zero, zero);
final FieldPVCoordinates plusK = new FieldPVCoordinates<>(FieldVector3D.getPlusK(field), zero, zero);
final FieldTransform bodyToRef = getBodyFrame().getTransformTo(frame, date);
// compute sliding target ground point
final FieldPVCoordinates slidingRef = getTargetPV(pvProv, date, frame);
final FieldPVCoordinates slidingBody = bodyToRef.getInverse().transformPVCoordinates(slidingRef);
// compute relative position of sliding ground point with respect to satellite
final FieldPVCoordinates relativePosition =
new FieldPVCoordinates<>(pvProv.getPVCoordinates(date, frame), slidingRef);
// compute relative velocity of fixed ground point with respect to sliding ground point
// the velocity part of the transformPVCoordinates for the sliding point ps
// from body frame to reference frame is:
// d(ps_ref)/dt = r(d(ps_body)/dt + dq/dt) - Ω ⨯ ps_ref
// where r is the rotation part of the transform, Ω is the corresponding
// angular rate, and dq/dt is the derivative of the translation part of the
// transform (the translation itself, without derivative, is hidden in the
// ps_ref part in the cross product).
// The sliding point ps is co-located to a fixed ground point pf (i.e. they have the
// same position at time of computation), but this fixed point as zero velocity
// with respect to the ground. So the velocity part of the transformPVCoordinates
// for this fixed point can be computed using the same formula as above:
// from body frame to reference frame is:
// d(pf_ref)/dt = r(0 + dq/dt) - Ω ⨯ pf_ref
// so remembering that the two points are at the same location at computation time,
// i.e. that at t=0 pf_ref=ps_ref, the relative velocity between the fixed point
// and the sliding point is given by the simple expression:
// d(ps_ref)/dt - d(pf_ref)/dt = r(d(ps_body)/dt)
// the acceleration is computed by differentiating the expression, which gives:
// d²(ps_ref)/dt² - d²(pf_ref)/dt² = r(d²(ps_body)/dt²) - Ω ⨯ [d(ps_ref)/dt - d(pf_ref)/dt]
final FieldVector3D v = bodyToRef.getRotation().applyTo(slidingBody.getVelocity());
final FieldVector3D a = new FieldVector3D<>(+1, bodyToRef.getRotation().applyTo(slidingBody.getAcceleration()),
-1, FieldVector3D.crossProduct(bodyToRef.getRotationRate(), v));
final FieldPVCoordinates relativeVelocity = new FieldPVCoordinates<>(v, a, FieldVector3D.getZero(date.getField()));
final FieldPVCoordinates relativeNormal =
relativePosition.crossProduct(relativeVelocity).normalize();
// attitude definition :
// . Z satellite axis points to sliding target
// . target relative velocity is in (Z, X) plane, in the -X half plane part
return new FieldAttitude<>(frame,
new TimeStampedFieldAngularCoordinates<>(date,
relativePosition.normalize(),
relativeNormal.normalize(),
plusK, plusJ,
1.0e-9));
}
/** Compute the yaw compensation angle at date.
* @param pvProv provider for PV coordinates
* @param date date at which compensation is requested
* @param frame reference frame from which attitude is computed
* @return yaw compensation angle for orbit.
*/
public double getYawAngle(final PVCoordinatesProvider pvProv,
final AbsoluteDate date, final Frame frame) {
final Rotation rBase = getBaseState(pvProv, date, frame).getRotation();
final Rotation rCompensated = getAttitude(pvProv, date, frame).getRotation();
final Rotation compensation = rCompensated.compose(rBase.revert(), RotationConvention.VECTOR_OPERATOR);
return -compensation.applyTo(Vector3D.PLUS_I).getAlpha();
}
/** Compute the yaw compensation angle at date.
* @param pvProv provider for PV coordinates
* @param date date at which compensation is requested
* @param frame reference frame from which attitude is computed
* @param type of the field elements
* @return yaw compensation angle for orbit.
* @since 9.0
*/
public > T getYawAngle(final FieldPVCoordinatesProvider pvProv,
final FieldAbsoluteDate date,
final Frame frame) {
final FieldRotation rBase = getBaseState(pvProv, date, frame).getRotation();
final FieldRotation rCompensated = getAttitude(pvProv, date, frame).getRotation();
final FieldRotation compensation = rCompensated.compose(rBase.revert(), RotationConvention.VECTOR_OPERATOR);
return compensation.applyTo(Vector3D.PLUS_I).getAlpha().negate();
}
}