org.orekit.attitudes.BodyCenterPointing Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of orekit Show documentation
Show all versions of orekit Show documentation
OREKIT (ORbits Extrapolation KIT) is a low level space dynamics library.
It provides basic elements (orbits, dates, attitude, frames ...) and
various algorithms to handle them (conversions, analytical and numerical
propagation, pointing ...).
/* Copyright 2002-2024 CS GROUP
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.attitudes;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathArrays;
import org.orekit.bodies.Ellipsoid;
import org.orekit.frames.Frame;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.utils.FieldPVCoordinatesProvider;
import org.orekit.utils.PVCoordinatesProvider;
import org.orekit.utils.TimeStampedFieldPVCoordinates;
import org.orekit.utils.TimeStampedPVCoordinates;
/**
* This class handles body center pointing attitude provider.
*
* This class represents the attitude provider where the satellite z axis is
* pointing to the body frame center.
*
* The object BodyCenterPointing
is guaranteed to be immutable.
*
* @see GroundPointing
* @author Véronique Pommier-Maurussane
*/
public class BodyCenterPointing extends GroundPointing {
/** Body ellipsoid. */
private final Ellipsoid ellipsoid;
/** Creates new instance.
* @param inertialFrame frame in which orbital velocities are computed
* @param shape Body shape
* @since 7.1
*/
public BodyCenterPointing(final Frame inertialFrame, final Ellipsoid shape) {
super(inertialFrame, shape.getFrame());
this.ellipsoid = shape;
}
/** {@inheritDoc} */
@Override
public TimeStampedPVCoordinates getTargetPV(final PVCoordinatesProvider pvProv,
final AbsoluteDate date, final Frame frame) {
// spacecraft coordinates in body frame
final TimeStampedPVCoordinates scInBodyFrame = pvProv.getPVCoordinates(date, getBodyFrame());
// central projection to ground (NOT the classical nadir point)
final double u = scInBodyFrame.getPosition().getX() / ellipsoid.getA();
final double v = scInBodyFrame.getPosition().getY() / ellipsoid.getB();
final double w = scInBodyFrame.getPosition().getZ() / ellipsoid.getC();
final double d2 = u * u + v * v + w * w;
final double d = FastMath.sqrt(d2);
final double ratio = 1.0 / d;
final Vector3D projectedP = new Vector3D(ratio, scInBodyFrame.getPosition());
// velocity
final double uDot = scInBodyFrame.getVelocity().getX() / ellipsoid.getA();
final double vDot = scInBodyFrame.getVelocity().getY() / ellipsoid.getB();
final double wDot = scInBodyFrame.getVelocity().getZ() / ellipsoid.getC();
final double dDot = MathArrays.linearCombination(u, uDot, v, vDot, w, wDot) / d;
final double ratioDot = -dDot / d2;
final Vector3D projectedV = new Vector3D(ratio, scInBodyFrame.getVelocity(),
ratioDot, scInBodyFrame.getPosition());
// acceleration
final double uDotDot = scInBodyFrame.getAcceleration().getX() / ellipsoid.getA();
final double vDotDot = scInBodyFrame.getAcceleration().getY() / ellipsoid.getB();
final double wDotDot = scInBodyFrame.getAcceleration().getZ() / ellipsoid.getC();
final double dDotDot = (MathArrays.linearCombination(u, uDotDot, v, vDotDot, w, wDotDot) +
uDot * uDot + vDot * vDot + wDot * wDot - dDot * dDot) / d;
final double ratioDotDot = (2 * dDot * dDot - d * dDotDot) / (d * d2);
final Vector3D projectedA = new Vector3D(ratio, scInBodyFrame.getAcceleration(),
2 * ratioDot, scInBodyFrame.getVelocity(),
ratioDotDot, scInBodyFrame.getPosition());
final TimeStampedPVCoordinates projected =
new TimeStampedPVCoordinates(date, projectedP, projectedV, projectedA);
return getBodyFrame().getTransformTo(frame, date).transformPVCoordinates(projected);
}
/** {@inheritDoc} */
@Override
protected Vector3D getTargetPosition(final PVCoordinatesProvider pvProv, final AbsoluteDate date, final Frame frame) {
// spacecraft coordinates in body frame
final Vector3D scPositionInBodyFrame = pvProv.getPosition(date, getBodyFrame());
// central projection to ground (NOT the classical nadir point)
final double u = scPositionInBodyFrame.getX() / ellipsoid.getA();
final double v = scPositionInBodyFrame.getY() / ellipsoid.getB();
final double w = scPositionInBodyFrame.getZ() / ellipsoid.getC();
final double d2 = u * u + v * v + w * w;
final double d = FastMath.sqrt(d2);
final double ratio = 1.0 / d;
final Vector3D projectedP = new Vector3D(ratio, scPositionInBodyFrame);
return getBodyFrame().getStaticTransformTo(frame, date).transformPosition(projectedP);
}
/** {@inheritDoc} */
public > TimeStampedFieldPVCoordinates getTargetPV(final FieldPVCoordinatesProvider pvProv,
final FieldAbsoluteDate date, final Frame frame) {
// spacecraft coordinates in body frame
final TimeStampedFieldPVCoordinates scInBodyFrame = pvProv.getPVCoordinates(date, getBodyFrame());
// central projection to ground (NOT the classical nadir point)
final T u = scInBodyFrame.getPosition().getX().divide(ellipsoid.getA());
final T v = scInBodyFrame.getPosition().getY().divide(ellipsoid.getB());
final T w = scInBodyFrame.getPosition().getZ().divide(ellipsoid.getC());
final T d2 = u.pow(2).add(v.pow(2)).add(w.pow(2));
final T d = d2.sqrt();
final T ratio = d.reciprocal();
final FieldVector3D projectedP = new FieldVector3D<>(ratio, scInBodyFrame.getPosition());
// velocity
final T uDot = scInBodyFrame.getVelocity().getX().divide(ellipsoid.getA());
final T vDot = scInBodyFrame.getVelocity().getY().divide(ellipsoid.getB());
final T wDot = scInBodyFrame.getVelocity().getZ().divide(ellipsoid.getC());
//we aren't using the linearCombination in the library
final T dDot = (u.multiply(uDot).add(v.multiply(vDot)).add(w.multiply(wDot))).divide(d);
final T ratioDot = dDot.multiply(-1).divide(d2);
final FieldVector3D projectedV = new FieldVector3D<>(ratio, scInBodyFrame.getVelocity(),
ratioDot, scInBodyFrame.getPosition());
// acceleration
final T uDotDot = scInBodyFrame.getAcceleration().getX().divide(ellipsoid.getA());
final T vDotDot = scInBodyFrame.getAcceleration().getY().divide(ellipsoid.getB());
final T wDotDot = scInBodyFrame.getAcceleration().getZ().divide(ellipsoid.getC());
final T dDotDot = u.multiply(uDotDot).add(v.multiply(vDotDot)).add(w.multiply( wDotDot)
.add(uDot.pow(2).add(vDot.pow(2)).add(wDot.pow(2)).subtract(dDot.pow(2))))
.divide(d);
final T ratioDotDot = (dDot.pow(2).multiply(2).subtract(d.multiply(dDotDot))).divide(d.multiply(d2));
final FieldVector3D projectedA = new FieldVector3D<>(ratio, scInBodyFrame.getAcceleration(),
ratioDot.multiply(2), scInBodyFrame.getVelocity(),
ratioDotDot, scInBodyFrame.getPosition());
final TimeStampedFieldPVCoordinates projected =
new TimeStampedFieldPVCoordinates<>(date, projectedP, projectedV, projectedA);
return getBodyFrame().getTransformTo(frame, date.toAbsoluteDate()).transformPVCoordinates(projected);
}
/** {@inheritDoc} */
@Override
protected > FieldVector3D getTargetPosition(final FieldPVCoordinatesProvider pvProv,
final FieldAbsoluteDate date,
final Frame frame) {
// spacecraft coordinates in body frame
final FieldVector3D scPositionInBodyFrame = pvProv.getPosition(date, getBodyFrame());
// central projection to ground (NOT the classical nadir point)
final T u = scPositionInBodyFrame.getX().divide(ellipsoid.getA());
final T v = scPositionInBodyFrame.getY().divide(ellipsoid.getB());
final T w = scPositionInBodyFrame.getZ().divide(ellipsoid.getC());
final T d = new FieldVector3D<>(u, v, w).getNorm();
final FieldVector3D projectedP = new FieldVector3D<>(d.reciprocal(), scPositionInBodyFrame);
return getBodyFrame().getStaticTransformTo(frame, date).transformPosition(projectedP);
}
}