All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.orekit.propagation.FieldSpacecraftState Maven / Gradle / Ivy

Go to download

OREKIT (ORbits Extrapolation KIT) is a low level space dynamics library. It provides basic elements (orbits, dates, attitude, frames ...) and various algorithms to handle them (conversions, analytical and numerical propagation, pointing ...).

There is a newer version: 12.2
Show newest version
/* Copyright 2002-2018 CS Systèmes d'Information
 * Licensed to CS Systèmes d'Information (CS) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * CS licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.orekit.propagation;


import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.Stream;

import org.hipparchus.Field;
import org.hipparchus.RealFieldElement;
import org.hipparchus.analysis.interpolation.FieldHermiteInterpolator;
import org.hipparchus.exception.LocalizedCoreFormats;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.exception.MathIllegalStateException;
import org.hipparchus.util.MathArrays;
import org.orekit.attitudes.FieldAttitude;
import org.orekit.attitudes.LofOffset;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitExceptionWrapper;
import org.orekit.errors.OrekitIllegalArgumentException;
import org.orekit.errors.OrekitMessages;
import org.orekit.frames.FieldTransform;
import org.orekit.frames.Frame;
import org.orekit.frames.LOFType;
import org.orekit.orbits.FieldOrbit;
import org.orekit.orbits.PositionAngle;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.time.FieldTimeInterpolable;
import org.orekit.time.FieldTimeShiftable;
import org.orekit.time.FieldTimeStamped;
import org.orekit.utils.TimeStampedFieldPVCoordinates;


/** This class is the representation of a complete state holding orbit, attitude
 * and mass information at a given date.
 *
 * 

It contains an {@link FieldOrbit orbital state} at a current * {@link FieldAbsoluteDate} both handled by an {@link FieldOrbit}, plus the current * mass and attitude. FieldOrbitand state are guaranteed to be consistent in terms * of date and reference frame. The spacecraft state may also contain additional * states, which are simply named double arrays which can hold any user-defined * data. *

*

* The state can be slightly shifted to close dates. This shift is based on * a simple Keplerian model for orbit, a linear extrapolation for attitude * taking the spin rate into account and no mass change. It is not * intended as a replacement for proper orbit and attitude propagation but * should be sufficient for either small time shifts or coarse accuracy. *

*

* The instance {@code FieldSpacecraftState} is guaranteed to be immutable. *

* @see org.orekit.propagation.numerical.NumericalPropagator * @author Fabien Maussion * @author Véronique Pommier-Maurussane * @author Luc Maisonobe */ public class FieldSpacecraftState > implements FieldTimeStamped, FieldTimeShiftable, T>, FieldTimeInterpolable, T> { /** Default mass. */ private static final double DEFAULT_MASS = 1000.0; /** * tolerance on date comparison in {@link #checkConsistency(FieldOrbit, FieldAttitude)}. 100 ns * corresponds to sub-mm accuracy at LEO orbital velocities. */ private static final double DATE_INCONSISTENCY_THRESHOLD = 100e-9; /** Orbital state. */ private final FieldOrbit orbit; /** FieldAttitude. */ private final FieldAttitude attitude; /** Current mass (kg). */ private final T mass; /** Additional states. */ private final Map additional; /** Build a spacecraft state from orbit only. *

FieldAttitude and mass are set to unspecified non-null arbitrary values.

* @param orbit the orbit * @exception OrekitException if default attitude cannot be computed */ public FieldSpacecraftState(final FieldOrbit orbit) throws OrekitException { this(orbit, new LofOffset(orbit.getFrame(), LOFType.VVLH).getAttitude(orbit, orbit.getDate(), orbit.getFrame()), orbit.getA().getField().getZero().add(DEFAULT_MASS), null); } /** Build a spacecraft state from orbit and attitude provider. *

Mass is set to an unspecified non-null arbitrary value.

* @param orbit the orbit * @param attitude attitude * @exception IllegalArgumentException if orbit and attitude dates * or frames are not equal */ public FieldSpacecraftState(final FieldOrbit orbit, final FieldAttitude attitude) throws IllegalArgumentException { this(orbit, attitude, orbit.getA().getField().getZero().add(DEFAULT_MASS), null); } /** Create a new instance from orbit and mass. *

FieldAttitude law is set to an unspecified default attitude.

* @param orbit the orbit * @param mass the mass (kg) * @exception OrekitException if default attitude cannot be computed */ public FieldSpacecraftState(final FieldOrbit orbit, final T mass) throws OrekitException { this(orbit, new LofOffset(orbit.getFrame(), LOFType.VVLH).getAttitude(orbit, orbit.getDate(), orbit.getFrame()), mass, null); } /** Build a spacecraft state from orbit, attitude provider and mass. * @param orbit the orbit * @param attitude attitude * @param mass the mass (kg) * @exception IllegalArgumentException if orbit and attitude dates * or frames are not equal */ public FieldSpacecraftState(final FieldOrbit orbit, final FieldAttitude attitude, final T mass) throws IllegalArgumentException { this(orbit, attitude, mass, null); } /** Build a spacecraft state from orbit only. *

FieldAttitude and mass are set to unspecified non-null arbitrary values.

* @param orbit the orbit * @param additional additional states * @exception OrekitException if default attitude cannot be computed */ public FieldSpacecraftState(final FieldOrbit orbit, final Map additional) throws OrekitException { this(orbit, new LofOffset(orbit.getFrame(), LOFType.VVLH).getAttitude(orbit, orbit.getDate(), orbit.getFrame()), orbit.getA().getField().getZero().add(DEFAULT_MASS), additional); } /** Build a spacecraft state from orbit and attitude provider. *

Mass is set to an unspecified non-null arbitrary value.

* @param orbit the orbit * @param attitude attitude * @param additional additional states * @exception IllegalArgumentException if orbit and attitude dates * or frames are not equal */ public FieldSpacecraftState(final FieldOrbit orbit, final FieldAttitude attitude, final Map additional) throws IllegalArgumentException { this(orbit, attitude, orbit.getA().getField().getZero().add(DEFAULT_MASS), additional); } /** Create a new instance from orbit and mass. *

FieldAttitude law is set to an unspecified default attitude.

* @param orbit the orbit * @param mass the mass (kg) * @param additional additional states * @exception OrekitException if default attitude cannot be computed */ public FieldSpacecraftState(final FieldOrbit orbit, final T mass, final Map additional) throws OrekitException { this(orbit, new LofOffset(orbit.getFrame(), LOFType.VVLH).getAttitude(orbit, orbit.getDate(), orbit.getFrame()), mass, additional); } /** Build a spacecraft state from orbit, attitude provider and mass. * @param orbit the orbit * @param attitude attitude * @param mass the mass (kg) * @param additional additional states (may be null if no additional states are available) * @exception IllegalArgumentException if orbit and attitude dates * or frames are not equal */ public FieldSpacecraftState(final FieldOrbit orbit, final FieldAttitude attitude, final T mass, final Map additional) throws IllegalArgumentException { checkConsistency(orbit, attitude); this.orbit = orbit; this.attitude = attitude; this.mass = mass; if (additional == null) { this.additional = Collections.emptyMap(); } else { this.additional = new HashMap(additional.size()); for (final Map.Entry entry : additional.entrySet()) { this.additional.put(entry.getKey(), entry.getValue().clone()); } } } /** Convert a {@link SpacecraftState}. * @param field field to which the elements belong * @param state state to convert */ public FieldSpacecraftState(final Field field, final SpacecraftState state) { final double[] stateD = new double[6]; final double[] stateDotD = state.getOrbit().hasDerivatives() ? new double[6] : null; state.getOrbit().getType().mapOrbitToArray(state.getOrbit(), PositionAngle.TRUE, stateD, stateDotD); final T[] stateF = MathArrays.buildArray(field, 6); for (int i = 0; i < stateD.length; ++i) { stateF[i] = field.getZero().add(stateD[i]); } final T[] stateDotF; if (stateDotD == null) { stateDotF = null; } else { stateDotF = MathArrays.buildArray(field, 6); for (int i = 0; i < stateDotD.length; ++i) { stateDotF[i] = field.getZero().add(stateDotD[i]); } } final FieldAbsoluteDate dateF = new FieldAbsoluteDate<>(field, state.getDate()); this.orbit = state.getOrbit().getType().mapArrayToOrbit(stateF, stateDotF, PositionAngle.TRUE, dateF, state.getMu(), state.getFrame()); this.attitude = new FieldAttitude<>(field, state.getAttitude()); this.mass = field.getZero().add(state.getMass()); final Map additionalD = state.getAdditionalStates(); if (additionalD.isEmpty()) { this.additional = Collections.emptyMap(); } else { this.additional = new HashMap(additionalD.size()); for (final Map.Entry entry : additionalD.entrySet()) { final T[] array = MathArrays.buildArray(field, entry.getValue().length); for (int k = 0; k < array.length; ++k) { array[k] = field.getZero().add(entry.getValue()[k]); } this.additional.put(entry.getKey(), array); } } } /** Add an additional state. *

* {@link FieldSpacecraftState SpacecraftState} instances are immutable, * so this method does not change the instance, but rather * creates a new instance, which has the same orbit, attitude, mass * and additional states as the original instance, except it also * has the specified state. If the original instance already had an * additional state with the same name, it will be overridden. If it * did not have any additional state with that name, the new instance * will have one more additional state than the original instance. *

* @param name name of the additional state * @param value value of the additional state * @return a new instance, with the additional state added * @see #hasAdditionalState(String) * @see #getAdditionalState(String) * @see #getAdditionalStates() */ @SafeVarargs public final FieldSpacecraftState addAdditionalState(final String name, final T... value) { final Map newMap = new HashMap(additional.size() + 1); newMap.putAll(additional); newMap.put(name, value.clone()); return new FieldSpacecraftState<>(orbit, attitude, mass, newMap); } /** Check orbit and attitude dates are equal. * @param orbitN the orbit * @param attitudeN attitude * @exception IllegalArgumentException if orbit and attitude dates * are not equal */ private void checkConsistency(final FieldOrbit orbitN, final FieldAttitude attitudeN) throws IllegalArgumentException { if (orbitN.getDate().durationFrom(attitudeN.getDate()).abs().getReal() > DATE_INCONSISTENCY_THRESHOLD) { throw new OrekitIllegalArgumentException(OrekitMessages.ORBIT_AND_ATTITUDE_DATES_MISMATCH, orbitN.getDate(), attitudeN.getDate()); } if (orbitN.getFrame() != attitudeN.getReferenceFrame()) { throw new OrekitIllegalArgumentException(OrekitMessages.FRAMES_MISMATCH, orbitN.getFrame().getName(), attitudeN.getReferenceFrame().getName()); } } /** Get a time-shifted state. *

* The state can be slightly shifted to close dates. This shift is based on * a simple Keplerian model for orbit, a linear extrapolation for attitude * taking the spin rate into account and neither mass nor additional states * changes. It is not intended as a replacement for proper orbit * and attitude propagation but should be sufficient for small time shifts * or coarse accuracy. *

*

* As a rough order of magnitude, the following table shows the extrapolation * errors obtained between this simple shift method and an {@link * org.orekit.propagation.numerical.NumericalPropagator numerical * propagator} for a low Earth Sun Synchronous Orbit, with a 20x20 gravity field, * Sun and Moon third bodies attractions, drag and solar radiation pressure. * Beware that these results will be different for other orbits. *

* * * * * * * * * *
Extrapolation Error
interpolation time (s)position error without derivatives (m)position error with derivatives (m)
60 18 1.1
120 72 9.1
300 447 140
60016011067
90031413307
* @param dt time shift in seconds * @return a new state, shifted with respect to the instance (which is immutable) * except for the mass which stay unchanged */ public FieldSpacecraftState shiftedBy(final double dt) { return new FieldSpacecraftState<>(orbit.shiftedBy(dt), attitude.shiftedBy(dt), mass, additional); } /** Get a time-shifted state. *

* The state can be slightly shifted to close dates. This shift is based on * a simple Keplerian model for orbit, a linear extrapolation for attitude * taking the spin rate into account and neither mass nor additional states * changes. It is not intended as a replacement for proper orbit * and attitude propagation but should be sufficient for small time shifts * or coarse accuracy. *

*

* As a rough order of magnitude, the following table shows the extrapolation * errors obtained between this simple shift method and an {@link * org.orekit.propagation.numerical.NumericalPropagator numerical * propagator} for a low Earth Sun Synchronous Orbit, with a 20x20 gravity field, * Sun and Moon third bodies attractions, drag and solar radiation pressure. * Beware that these results will be different for other orbits. *

* * * * * * * * * *
Extrapolation Error
interpolation time (s)position error without derivatives (m)position error with derivatives (m)
60 18 1.1
120 72 9.1
300 447 140
60016011067
90031413307
* @param dt time shift in seconds * @return a new state, shifted with respect to the instance (which is immutable) * except for the mass which stay unchanged */ public FieldSpacecraftState shiftedBy(final T dt) { return new FieldSpacecraftState<>(orbit.shiftedBy(dt), attitude.shiftedBy(dt), mass, additional); } /** Get an interpolated instance. *

* The additional states that are interpolated are the ones already present * in the instance. The sample instances must therefore have at least the same * additional states has the instance. They may have more additional states, * but the extra ones will be ignored. *

*

* As this implementation of interpolation is polynomial, it should be used only * with small samples (about 10-20 points) in order to avoid Runge's phenomenon * and numerical problems (including NaN appearing). *

* @param date interpolation date * @param sample sample points on which interpolation should be done * @return a new instance, interpolated at specified date * @exception OrekitException if the number of point is too small for interpolating */ public FieldSpacecraftState interpolate(final FieldAbsoluteDate date, final Stream> sample) throws OrekitException { // prepare interpolators final List> orbits = new ArrayList<>(); final List> attitudes = new ArrayList<>(); final FieldHermiteInterpolator massInterpolator = new FieldHermiteInterpolator<>(); final Map> additionalInterpolators = new HashMap>(additional.size()); for (final String name : additional.keySet()) { additionalInterpolators.put(name, new FieldHermiteInterpolator<>()); } // extract sample data try { sample.forEach(state -> { try { final T deltaT = state.getDate().durationFrom(date); orbits.add(state.getOrbit()); attitudes.add(state.getAttitude()); final T[] mm = MathArrays.buildArray(orbit.getA().getField(), 1); mm[0] = state.getMass(); massInterpolator.addSamplePoint(deltaT, mm); for (final Map.Entry> entry : additionalInterpolators.entrySet()) { entry.getValue().addSamplePoint(deltaT, state.getAdditionalState(entry.getKey())); } } catch (OrekitException oe) { throw new OrekitExceptionWrapper(oe); } }); } catch (OrekitExceptionWrapper oew) { throw oew.getException(); } // perform interpolations final FieldOrbit interpolatedOrbit = orbit.interpolate(date, orbits); final FieldAttitude interpolatedAttitude = attitude.interpolate(date, attitudes); final T interpolatedMass = massInterpolator.value(orbit.getA().getField().getZero())[0]; final Map interpolatedAdditional; if (additional.isEmpty()) { interpolatedAdditional = null; } else { interpolatedAdditional = new HashMap(additional.size()); for (final Map.Entry> entry : additionalInterpolators.entrySet()) { interpolatedAdditional.put(entry.getKey(), entry.getValue().value(orbit.getA().getField().getZero())); } } // create the complete interpolated state return new FieldSpacecraftState<>(interpolatedOrbit, interpolatedAttitude, interpolatedMass, interpolatedAdditional); } /** Gets the current orbit. * @return the orbit */ public FieldOrbit getOrbit() { return orbit; } /** Get the date. * @return date */ public FieldAbsoluteDate getDate() { return orbit.getDate(); } /** Get the inertial frame. * @return the frame */ public Frame getFrame() { return orbit.getFrame(); } /** Check if an additional state is available. * @param name name of the additional state * @return true if the additional state is available * @see #addAdditionalState(String, RealFieldElement...) * @see #getAdditionalState(String) * @see #getAdditionalStates() */ public boolean hasAdditionalState(final String name) { return additional.containsKey(name); } /** Check if two instances have the same set of additional states available. *

* Only the names and dimensions of the additional states are compared, * not their values. *

* @param state state to compare to instance * @exception OrekitException if either instance or state supports an additional * state not supported by the other one * @exception MathIllegalArgumentException if an additional state does not have * the same dimension in both states */ public void ensureCompatibleAdditionalStates(final FieldSpacecraftState state) throws OrekitException, MathIllegalArgumentException { // check instance additional states is a subset of the other one for (final Map.Entry entry : additional.entrySet()) { final T[] other = state.additional.get(entry.getKey()); if (other == null) { throw new OrekitException(OrekitMessages.UNKNOWN_ADDITIONAL_STATE, entry.getKey()); } if (other.length != entry.getValue().length) { throw new MathIllegalStateException(LocalizedCoreFormats.DIMENSIONS_MISMATCH, other.length, entry.getValue().length); } } if (state.additional.size() > additional.size()) { // the other state has more additional states for (final String name : state.additional.keySet()) { if (!additional.containsKey(name)) { throw new OrekitException(OrekitMessages.UNKNOWN_ADDITIONAL_STATE, name); } } } } /** Get an additional state. * @param name name of the additional state * @return value of the additional state * @exception OrekitException if no additional state with that name exists * @see #addAdditionalState(String, RealFieldElement...) * @see #hasAdditionalState(String) * @see #getAdditionalStates() */ public T[] getAdditionalState(final String name) throws OrekitException { if (!additional.containsKey(name)) { throw new OrekitException(OrekitMessages.UNKNOWN_ADDITIONAL_STATE, name); } return additional.get(name).clone(); } /** Get an unmodifiable map of additional states. * @return unmodifiable map of additional states * @see #addAdditionalState(String, RealFieldElement...) * @see #hasAdditionalState(String) * @see #getAdditionalState(String) */ public Map getAdditionalStates() { return Collections.unmodifiableMap(additional); } /** Compute the transform from orbite/attitude reference frame to spacecraft frame. *

The spacecraft frame origin is at the point defined by the orbit, * and its orientation is defined by the attitude.

* @return transform from specified frame to current spacecraft frame */ public FieldTransform toTransform() { final FieldAbsoluteDate date = orbit.getDate(); return new FieldTransform<>(date, new FieldTransform<>(date, orbit.getPVCoordinates().negate()), new FieldTransform<>(date, attitude.getOrientation())); } /** Get the central attraction coefficient. * @return mu central attraction coefficient (m^3/s^2) */ public double getMu() { return orbit.getMu(); } /** Get the Keplerian period. *

The Keplerian period is computed directly from semi major axis * and central acceleration constant.

* @return Keplerian period in seconds */ public T getKeplerianPeriod() { return orbit.getKeplerianPeriod(); } /** Get the Keplerian mean motion. *

The Keplerian mean motion is computed directly from semi major axis * and central acceleration constant.

* @return Keplerian mean motion in radians per second */ public T getKeplerianMeanMotion() { return orbit.getKeplerianMeanMotion(); } /** Get the semi-major axis. * @return semi-major axis (m) */ public T getA() { return orbit.getA(); } /** Get the first component of the eccentricity vector (as per equinoctial parameters). * @return e cos(ω + Ω), first component of eccentricity vector * @see #getE() */ public T getEquinoctialEx() { return orbit.getEquinoctialEx(); } /** Get the second component of the eccentricity vector (as per equinoctial parameters). * @return e sin(ω + Ω), second component of the eccentricity vector * @see #getE() */ public T getEquinoctialEy() { return orbit.getEquinoctialEy(); } /** Get the first component of the inclination vector (as per equinoctial parameters). * @return tan(i/2) cos(Ω), first component of the inclination vector * @see #getI() */ public T getHx() { return orbit.getHx(); } /** Get the second component of the inclination vector (as per equinoctial parameters). * @return tan(i/2) sin(Ω), second component of the inclination vector * @see #getI() */ public T getHy() { return orbit.getHy(); } /** Get the true latitude argument (as per equinoctial parameters). * @return v + ω + Ω true latitude argument (rad) * @see #getLE() * @see #getLM() */ public T getLv() { return orbit.getLv(); } /** Get the eccentric latitude argument (as per equinoctial parameters). * @return E + ω + Ω eccentric latitude argument (rad) * @see #getLv() * @see #getLM() */ public T getLE() { return orbit.getLE(); } /** Get the mean latitude argument (as per equinoctial parameters). * @return M + ω + Ω mean latitude argument (rad) * @see #getLv() * @see #getLE() */ public T getLM() { return orbit.getLM(); } // Additional orbital elements /** Get the eccentricity. * @return eccentricity * @see #getEquinoctialEx() * @see #getEquinoctialEy() */ public T getE() { return orbit.getE(); } /** Get the inclination. * @return inclination (rad) * @see #getHx() * @see #getHy() */ public T getI() { return orbit.getI(); } /** Get the {@link TimeStampedFieldPVCoordinates} in orbit definition frame. * Compute the position and velocity of the satellite. This method caches its * results, and recompute them only when the method is called with a new value * for mu. The result is provided as a reference to the internally cached * {@link TimeStampedFieldPVCoordinates}, so the caller is responsible to copy it in a separate * {@link TimeStampedFieldPVCoordinates} if it needs to keep the value for a while. * @return pvCoordinates in orbit definition frame */ public TimeStampedFieldPVCoordinates getPVCoordinates() { return orbit.getPVCoordinates(); } /** Get the {@link TimeStampedFieldPVCoordinates} in given output frame. * Compute the position and velocity of the satellite. This method caches its * results, and recompute them only when the method is called with a new value * for mu. The result is provided as a reference to the internally cached * {@link TimeStampedFieldPVCoordinates}, so the caller is responsible to copy it in a separate * {@link TimeStampedFieldPVCoordinates} if it needs to keep the value for a while. * @param outputFrame frame in which coordinates should be defined * @return pvCoordinates in orbit definition frame * @exception OrekitException if the transformation between frames cannot be computed */ public TimeStampedFieldPVCoordinates getPVCoordinates(final Frame outputFrame) throws OrekitException { return orbit.getPVCoordinates(outputFrame); } /** Get the attitude. * @return the attitude. */ public FieldAttitude getAttitude() { return attitude; } /** Gets the current mass. * @return the mass (kg) */ public T getMass() { return mass; } /**To convert a FieldSpacecraftState instance into a SpacecraftState instance. * * @return SpacecraftState instance with the same properties */ public SpacecraftState toSpacecraftState() { final Map map; if (additional.isEmpty()) { map = Collections.emptyMap(); } else { map = new HashMap<>(additional.size()); for (final Map.Entry entry : additional.entrySet()) { final double[] array = new double[entry.getValue().length]; for (int k = 0; k < array.length; ++k) { array[k] = entry.getValue()[k].getReal(); } map.put(entry.getKey(), array); } } return new SpacecraftState(orbit.toOrbit(), attitude.toAttitude(), mass.getReal(), map); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy