All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.orekit.utils.SecularAndHarmonic Maven / Gradle / Ivy

Go to download

OREKIT (ORbits Extrapolation KIT) is a low level space dynamics library. It provides basic elements (orbits, dates, attitude, frames ...) and various algorithms to handle them (conversions, analytical and numerical propagation, pointing ...).

There is a newer version: 12.2
Show newest version
/* Copyright 2002-2018 CS Systèmes d'Information
 * Licensed to CS Systèmes d'Information (CS) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * CS licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.orekit.utils;

import java.util.ArrayList;
import java.util.Collection;
import java.util.List;

import org.hipparchus.analysis.ParametricUnivariateFunction;
import org.hipparchus.fitting.AbstractCurveFitter;
import org.hipparchus.fitting.PolynomialCurveFitter;
import org.hipparchus.fitting.WeightedObservedPoint;
import org.hipparchus.linear.DiagonalMatrix;
import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresBuilder;
import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem;
import org.hipparchus.util.FastMath;
import org.orekit.time.AbsoluteDate;

/** Class for fitting evolution of osculating orbital parameters.
 * 

* This class allows conversion from osculating parameters to mean parameters. *

* * @author Luc Maisonobe */ public class SecularAndHarmonic { /** Degree of polynomial secular part. */ private final int secularDegree; /** Pulsations of harmonic part. */ private final double[] pulsations; /** Reference date for the model. */ private AbsoluteDate reference; /** Fitted parameters. */ private double[] fitted; /** Observed points. */ private List observedPoints; /** Simple constructor. * @param secularDegree degree of polynomial secular part * @param pulsations pulsations of harmonic part */ public SecularAndHarmonic(final int secularDegree, final double... pulsations) { this.secularDegree = secularDegree; this.pulsations = pulsations.clone(); this.observedPoints = new ArrayList(); } /** Reset fitting. * @param date reference date * @param initialGuess initial guess for the parameters * @see #getReferenceDate() */ public void resetFitting(final AbsoluteDate date, final double... initialGuess) { reference = date; fitted = initialGuess.clone(); observedPoints.clear(); } /** Add a fitting point. * @param date date of the point * @param osculatingValue osculating value */ public void addPoint(final AbsoluteDate date, final double osculatingValue) { observedPoints.add(new WeightedObservedPoint(1.0, date.durationFrom(reference), osculatingValue)); } /** Get the reference date. * @return reference date * @see #resetFitting(AbsoluteDate, double...) */ public AbsoluteDate getReferenceDate() { return reference; } /** Get an upper bound of the fitted harmonic amplitude. * @return upper bound of the fitted harmonic amplitude */ public double getHarmonicAmplitude() { double amplitude = 0; for (int i = 0; i < pulsations.length; ++i) { amplitude += FastMath.hypot(fitted[secularDegree + 2 * i + 1], fitted[secularDegree + 2 * i + 2]); } return amplitude; } /** Fit parameters. * @see #getFittedParameters() */ public void fit() { final AbstractCurveFitter fitter = new AbstractCurveFitter() { /** {@inheritDoc} */ @Override protected LeastSquaresProblem getProblem(final Collection observations) { // Prepare least-squares problem. final int len = observations.size(); final double[] target = new double[len]; final double[] weights = new double[len]; int i = 0; for (final WeightedObservedPoint obs : observations) { target[i] = obs.getY(); weights[i] = obs.getWeight(); ++i; } final AbstractCurveFitter.TheoreticalValuesFunction model = new AbstractCurveFitter.TheoreticalValuesFunction(new LocalParametricFunction(), observations); // build a new least squares problem set up to fit a secular and harmonic curve to the observed points return new LeastSquaresBuilder(). maxEvaluations(Integer.MAX_VALUE). maxIterations(Integer.MAX_VALUE). start(fitted). target(target). weight(new DiagonalMatrix(weights)). model(model.getModelFunction(), model.getModelFunctionJacobian()). build(); } }; fitted = fitter.fit(observedPoints); } /** Local parametric function used for fitting. */ private class LocalParametricFunction implements ParametricUnivariateFunction { /** {@inheritDoc} */ public double value(final double x, final double... parameters) { return truncatedValue(secularDegree, pulsations.length, x, parameters); } /** {@inheritDoc} */ public double[] gradient(final double x, final double... parameters) { final double[] gradient = new double[secularDegree + 1 + 2 * pulsations.length]; // secular part double xN = 1.0; for (int i = 0; i <= secularDegree; ++i) { gradient[i] = xN; xN *= x; } // harmonic part for (int i = 0; i < pulsations.length; ++i) { gradient[secularDegree + 2 * i + 1] = FastMath.cos(pulsations[i] * x); gradient[secularDegree + 2 * i + 2] = FastMath.sin(pulsations[i] * x); } return gradient; } } /** Get a copy of the last fitted parameters. * @return copy of the last fitted parameters. * @see #fit() */ public double[] getFittedParameters() { return fitted.clone(); } /** Get fitted osculating value. * @param date current date * @return osculating value at current date */ public double osculatingValue(final AbsoluteDate date) { return truncatedValue(secularDegree, pulsations.length, date.durationFrom(reference), fitted); } /** Get fitted osculating derivative. * @param date current date * @return osculating derivative at current date */ public double osculatingDerivative(final AbsoluteDate date) { return truncatedDerivative(secularDegree, pulsations.length, date.durationFrom(reference), fitted); } /** Get fitted osculating second derivative. * @param date current date * @return osculating second derivative at current date */ public double osculatingSecondDerivative(final AbsoluteDate date) { return truncatedSecondDerivative(secularDegree, pulsations.length, date.durationFrom(reference), fitted); } /** Get mean value, truncated to first components. * @param date current date * @param degree degree of polynomial secular part to consider * @param harmonics number of harmonics terms to consider * @return mean value at current date */ public double meanValue(final AbsoluteDate date, final int degree, final int harmonics) { return truncatedValue(degree, harmonics, date.durationFrom(reference), fitted); } /** Get mean derivative, truncated to first components. * @param date current date * @param degree degree of polynomial secular part to consider * @param harmonics number of harmonics terms to consider * @return mean derivative at current date */ public double meanDerivative(final AbsoluteDate date, final int degree, final int harmonics) { return truncatedDerivative(degree, harmonics, date.durationFrom(reference), fitted); } /** Approximate an already fitted model to polynomial only terms. *

* This method is mainly used in order to combine the large amplitude long * periods with the secular part as a new approximate polynomial model over * some time range. This should be used rather than simply extracting the * polynomial coefficients from {@link #getFittedParameters()} when some * periodic terms amplitudes are large (for example Sun resonance effects * on local solar time in sun synchronous orbits). In theses cases, the pure * polynomial secular part in the coefficients may be far from the mean model. *

* @param combinedDegree desired degree for the combined polynomial * @param combinedReference desired reference date for the combined polynomial * @param meanDegree degree of polynomial secular part to consider * @param meanHarmonics number of harmonics terms to consider * @param start start date of the approximation time range * @param end end date of the approximation time range * @param step sampling step * @return coefficients of the approximate polynomial (in increasing degree order), * using the user provided reference date */ public double[] approximateAsPolynomialOnly(final int combinedDegree, final AbsoluteDate combinedReference, final int meanDegree, final int meanHarmonics, final AbsoluteDate start, final AbsoluteDate end, final double step) { final List points = new ArrayList(); for (AbsoluteDate date = start; date.compareTo(end) < 0; date = date.shiftedBy(step)) { points.add(new WeightedObservedPoint(1.0, date.durationFrom(combinedReference), meanValue(date, meanDegree, meanHarmonics))); } return PolynomialCurveFitter.create(combinedDegree).fit(points); } /** Get mean second derivative, truncated to first components. * @param date current date * @param degree degree of polynomial secular part * @param harmonics number of harmonics terms to consider * @return mean second derivative at current date */ public double meanSecondDerivative(final AbsoluteDate date, final int degree, final int harmonics) { return truncatedSecondDerivative(degree, harmonics, date.durationFrom(reference), fitted); } /** Get value truncated to first components. * @param degree degree of polynomial secular part * @param harmonics number of harmonics terms to consider * @param time time parameter * @param parameters models parameters (must include all parameters, * including the ones ignored due to model truncation) * @return truncated value */ private double truncatedValue(final int degree, final int harmonics, final double time, final double... parameters) { double value = 0; // secular part double tN = 1.0; for (int i = 0; i <= degree; ++i) { value += parameters[i] * tN; tN *= time; } // harmonic part for (int i = 0; i < harmonics; ++i) { value += parameters[secularDegree + 2 * i + 1] * FastMath.cos(pulsations[i] * time) + parameters[secularDegree + 2 * i + 2] * FastMath.sin(pulsations[i] * time); } return value; } /** Get derivative truncated to first components. * @param degree degree of polynomial secular part * @param harmonics number of harmonics terms to consider * @param time time parameter * @param parameters models parameters (must include all parameters, * including the ones ignored due to model truncation) * @return truncated derivative */ private double truncatedDerivative(final int degree, final int harmonics, final double time, final double... parameters) { double derivative = 0; // secular part double tN = 1.0; for (int i = 1; i <= degree; ++i) { derivative += i * parameters[i] * tN; tN *= time; } // harmonic part for (int i = 0; i < harmonics; ++i) { derivative += pulsations[i] * (-parameters[secularDegree + 2 * i + 1] * FastMath.sin(pulsations[i] * time) + parameters[secularDegree + 2 * i + 2] * FastMath.cos(pulsations[i] * time)); } return derivative; } /** Get second derivative truncated to first components. * @param degree degree of polynomial secular part * @param harmonics number of harmonics terms to consider * @param time time parameter * @param parameters models parameters (must include all parameters, * including the ones ignored due to model truncation) * @return truncated second derivative */ private double truncatedSecondDerivative(final int degree, final int harmonics, final double time, final double... parameters) { double d2 = 0; // secular part double tN = 1.0; for (int i = 2; i <= degree; ++i) { d2 += (i - 1) * i * parameters[i] * tN; tN *= time; } // harmonic part for (int i = 0; i < harmonics; ++i) { d2 += -pulsations[i] * pulsations[i] * (parameters[secularDegree + 2 * i + 1] * FastMath.cos(pulsations[i] * time) + parameters[secularDegree + 2 * i + 2] * FastMath.sin(pulsations[i] * time)); } return d2; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy