org.orekit.bodies.OneAxisEllipsoid Maven / Gradle / Ivy
Show all versions of orekit Show documentation
/* Copyright 2002-2019 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.bodies;
import java.io.Serializable;
import org.hipparchus.RealFieldElement;
import org.hipparchus.analysis.differentiation.DerivativeStructure;
import org.hipparchus.geometry.euclidean.threed.FieldLine;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Line;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.geometry.euclidean.twod.Vector2D;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathArrays;
import org.orekit.frames.FieldTransform;
import org.orekit.frames.Frame;
import org.orekit.frames.Transform;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.utils.PVCoordinates;
import org.orekit.utils.TimeStampedPVCoordinates;
/** Modeling of a one-axis ellipsoid.
* One-axis ellipsoids is a good approximate model for most planet-size
* and larger natural bodies. It is the equilibrium shape reached by
* a fluid body under its own gravity field when it rotates. The symmetry
* axis is the rotation or polar axis.
* @author Luc Maisonobe
*/
public class OneAxisEllipsoid extends Ellipsoid implements BodyShape {
/** Serializable UID. */
private static final long serialVersionUID = 20130518L;
/** Threshold for polar and equatorial points detection. */
private static final double ANGULAR_THRESHOLD = 1.0e-4;
/** Body frame related to body shape. */
private final Frame bodyFrame;
/** Equatorial radius power 2. */
private final double ae2;
/** Polar radius power 2. */
private final double ap2;
/** Flattening. */
private final double f;
/** Eccentricity power 2. */
private final double e2;
/** 1 minus flatness. */
private final double g;
/** g * g. */
private final double g2;
/** Convergence limit. */
private double angularThreshold;
/** Simple constructor.
* Standard values for Earth models can be found in the {@link org.orekit.utils.Constants Constants} class:
*
* Ellipsoid Models
* model ae (m) f
* GRS 80
* {@link org.orekit.utils.Constants#GRS80_EARTH_EQUATORIAL_RADIUS Constants.GRS80_EARTH_EQUATORIAL_RADIUS}
* {@link org.orekit.utils.Constants#GRS80_EARTH_FLATTENING Constants.GRS80_EARTH_FLATTENING}
* WGS84
* {@link org.orekit.utils.Constants#WGS84_EARTH_EQUATORIAL_RADIUS Constants.WGS84_EARTH_EQUATORIAL_RADIUS}
* {@link org.orekit.utils.Constants#WGS84_EARTH_FLATTENING Constants.WGS84_EARTH_FLATTENING}
*
* @param ae equatorial radius
* @param f the flattening (f = (a-b)/a)
* @param bodyFrame body frame related to body shape
* @see org.orekit.frames.FramesFactory#getITRF(org.orekit.utils.IERSConventions, boolean)
*/
public OneAxisEllipsoid(final double ae, final double f,
final Frame bodyFrame) {
super(bodyFrame, ae, ae, ae * (1.0 - f));
this.f = f;
this.ae2 = ae * ae;
this.e2 = f * (2.0 - f);
this.g = 1.0 - f;
this.g2 = g * g;
this.ap2 = ae2 * g2;
setAngularThreshold(1.0e-12);
this.bodyFrame = bodyFrame;
}
/** Set the angular convergence threshold.
* The angular threshold is used both to identify points close to
* the ellipse axes and as the convergence threshold used to
* stop the iterations in the {@link #transform(Vector3D, Frame,
* AbsoluteDate)} method.
* If this method is not called, the default value is set to
* 10-12.
* @param angularThreshold angular convergence threshold (rad)
*/
public void setAngularThreshold(final double angularThreshold) {
this.angularThreshold = angularThreshold;
}
/** Get the equatorial radius of the body.
* @return equatorial radius of the body (m)
*/
public double getEquatorialRadius() {
return getA();
}
/** Get the flattening of the body: f = (a-b)/a.
* @return the flattening
*/
public double getFlattening() {
return f;
}
/** {@inheritDoc} */
public Frame getBodyFrame() {
return bodyFrame;
}
/** Get the intersection point of a line with the surface of the body.
* A line may have several intersection points with a closed
* surface (we consider the one point case as a degenerated two
* points case). The close parameter is used to select which of
* these points should be returned. The selected point is the one
* that is closest to the close point.
* @param line test line (may intersect the body or not)
* @param close point used for intersections selection
* @param frame frame in which line is expressed
* @param date date of the line in given frame
* @return intersection point at altitude zero or null if the line does
* not intersect the surface
* @since 9.3
*/
public Vector3D getCartesianIntersectionPoint(final Line line, final Vector3D close,
final Frame frame, final AbsoluteDate date) {
// transform line and close to body frame
final Transform frameToBodyFrame = frame.getTransformTo(bodyFrame, date);
final Line lineInBodyFrame = frameToBodyFrame.transformLine(line);
// compute some miscellaneous variables
final Vector3D point = lineInBodyFrame.getOrigin();
final double x = point.getX();
final double y = point.getY();
final double z = point.getZ();
final double z2 = z * z;
final double r2 = x * x + y * y;
final Vector3D direction = lineInBodyFrame.getDirection();
final double dx = direction.getX();
final double dy = direction.getY();
final double dz = direction.getZ();
final double cz2 = dx * dx + dy * dy;
// abscissa of the intersection as a root of a 2nd degree polynomial :
// a k^2 - 2 b k + c = 0
final double a = 1.0 - e2 * cz2;
final double b = -(g2 * (x * dx + y * dy) + z * dz);
final double c = g2 * (r2 - ae2) + z2;
final double b2 = b * b;
final double ac = a * c;
if (b2 < ac) {
return null;
}
final double s = FastMath.sqrt(b2 - ac);
final double k1 = (b < 0) ? (b - s) / a : c / (b + s);
final double k2 = c / (a * k1);
// select the right point
final Vector3D closeInBodyFrame = frameToBodyFrame.transformPosition(close);
final double closeAbscissa = lineInBodyFrame.getAbscissa(closeInBodyFrame);
final double k =
(FastMath.abs(k1 - closeAbscissa) < FastMath.abs(k2 - closeAbscissa)) ? k1 : k2;
return lineInBodyFrame.pointAt(k);
}
/** {@inheritDoc} */
public GeodeticPoint getIntersectionPoint(final Line line, final Vector3D close,
final Frame frame, final AbsoluteDate date) {
final Vector3D intersection = getCartesianIntersectionPoint(line, close, frame, date);
if (intersection == null) {
return null;
}
final double ix = intersection.getX();
final double iy = intersection.getY();
final double iz = intersection.getZ();
final double lambda = FastMath.atan2(iy, ix);
final double phi = FastMath.atan2(iz, g2 * FastMath.sqrt(ix * ix + iy * iy));
return new GeodeticPoint(phi, lambda, 0.0);
}
/** Get the intersection point of a line with the surface of the body.
* A line may have several intersection points with a closed
* surface (we consider the one point case as a degenerated two
* points case). The close parameter is used to select which of
* these points should be returned. The selected point is the one
* that is closest to the close point.
* @param line test line (may intersect the body or not)
* @param close point used for intersections selection
* @param frame frame in which line is expressed
* @param date date of the line in given frame
* @param type of the field elements
* @return intersection point at altitude zero or null if the line does
* not intersect the surface
* @since 9.3
*/
public > FieldVector3D getCartesianIntersectionPoint(final FieldLine line,
final FieldVector3D close,
final Frame frame,
final FieldAbsoluteDate date) {
// transform line and close to body frame
final FieldTransform frameToBodyFrame = frame.getTransformTo(bodyFrame, date);
final FieldLine lineInBodyFrame = frameToBodyFrame.transformLine(line);
// compute some miscellaneous variables
final FieldVector3D point = lineInBodyFrame.getOrigin();
final T x = point.getX();
final T y = point.getY();
final T z = point.getZ();
final T z2 = z.multiply(z);
final T r2 = x.multiply(x).add(y.multiply(y));
final FieldVector3D direction = lineInBodyFrame.getDirection();
final T dx = direction.getX();
final T dy = direction.getY();
final T dz = direction.getZ();
final T cz2 = dx.multiply(dx).add(dy.multiply(dy));
// abscissa of the intersection as a root of a 2nd degree polynomial :
// a k^2 - 2 b k + c = 0
final T a = cz2.multiply(e2).subtract(1.0).negate();
final T b = x.multiply(dx).add(y.multiply(dy)).multiply(g2).add(z.multiply(dz)).negate();
final T c = r2.subtract(ae2).multiply(g2).add(z2);
final T b2 = b.multiply(b);
final T ac = a.multiply(c);
if (b2.getReal() < ac.getReal()) {
return null;
}
final T s = b2.subtract(ac).sqrt();
final T k1 = (b.getReal() < 0) ? b.subtract(s).divide(a) : c.divide(b.add(s));
final T k2 = c.divide(a.multiply(k1));
// select the right point
final FieldVector3D closeInBodyFrame = frameToBodyFrame.transformPosition(close);
final T closeAbscissa = lineInBodyFrame.getAbscissa(closeInBodyFrame);
final T k = (FastMath.abs(k1.getReal() - closeAbscissa.getReal()) < FastMath.abs(k2.getReal() - closeAbscissa.getReal())) ?
k1 : k2;
return lineInBodyFrame.pointAt(k);
}
/** {@inheritDoc} */
public > FieldGeodeticPoint getIntersectionPoint(final FieldLine line,
final FieldVector3D close,
final Frame frame,
final FieldAbsoluteDate date) {
final FieldVector3D intersection = getCartesianIntersectionPoint(line, close, frame, date);
if (intersection == null) {
return null;
}
final T ix = intersection.getX();
final T iy = intersection.getY();
final T iz = intersection.getZ();
final T lambda = iy.atan2(ix);
final T phi = iz.atan2(ix.multiply(ix).add(iy.multiply(iy)).sqrt().multiply(g2));
return new FieldGeodeticPoint<>(phi, lambda, phi.getField().getZero());
}
/** {@inheritDoc} */
public Vector3D transform(final GeodeticPoint point) {
final double longitude = point.getLongitude();
final double cLambda = FastMath.cos(longitude);
final double sLambda = FastMath.sin(longitude);
final double latitude = point.getLatitude();
final double cPhi = FastMath.cos(latitude);
final double sPhi = FastMath.sin(latitude);
final double h = point.getAltitude();
final double n = getA() / FastMath.sqrt(1.0 - e2 * sPhi * sPhi);
final double r = (n + h) * cPhi;
return new Vector3D(r * cLambda, r * sLambda, (g2 * n + h) * sPhi);
}
/** {@inheritDoc} */
public > FieldVector3D transform(final FieldGeodeticPoint point) {
final T latitude = point.getLatitude();
final T longitude = point.getLongitude();
final T altitude = point.getAltitude();
final T cLambda = longitude.cos();
final T sLambda = longitude.sin();
final T cPhi = latitude.cos();
final T sPhi = latitude.sin();
final T n = sPhi.multiply(sPhi).multiply(e2).subtract(1.0).negate().sqrt().reciprocal().multiply(getA());
final T r = n.add(altitude).multiply(cPhi);
return new FieldVector3D<>(r.multiply(cLambda),
r.multiply(sLambda),
sPhi.multiply(altitude.add(n.multiply(g2))));
}
/** {@inheritDoc} */
public Vector3D projectToGround(final Vector3D point, final AbsoluteDate date, final Frame frame) {
// transform point to body frame
final Transform toBody = frame.getTransformTo(bodyFrame, date);
final Vector3D p = toBody.transformPosition(point);
final double z = p.getZ();
final double r = FastMath.hypot(p.getX(), p.getY());
// set up the 2D meridian ellipse
final Ellipse meridian = new Ellipse(Vector3D.ZERO,
new Vector3D(p.getX() / r, p.getY() / r, 0),
Vector3D.PLUS_K,
getA(), getC(), bodyFrame);
// find the closest point in the meridian plane
final Vector3D groundPoint = meridian.toSpace(meridian.projectToEllipse(new Vector2D(r, z)));
// transform point back to initial frame
return toBody.getInverse().transformPosition(groundPoint);
}
/** {@inheritDoc} */
public TimeStampedPVCoordinates projectToGround(final TimeStampedPVCoordinates pv, final Frame frame) {
// transform point to body frame
final Transform toBody = frame.getTransformTo(bodyFrame, pv.getDate());
final TimeStampedPVCoordinates pvInBodyFrame = toBody.transformPVCoordinates(pv);
final Vector3D p = pvInBodyFrame.getPosition();
final double r = FastMath.hypot(p.getX(), p.getY());
// set up the 2D ellipse corresponding to first principal curvature along meridian
final Vector3D meridian = new Vector3D(p.getX() / r, p.getY() / r, 0);
final Ellipse firstPrincipalCurvature =
new Ellipse(Vector3D.ZERO, meridian, Vector3D.PLUS_K, getA(), getC(), bodyFrame);
// project coordinates in the meridian plane
final TimeStampedPVCoordinates gpFirst = firstPrincipalCurvature.projectToEllipse(pvInBodyFrame);
final Vector3D gpP = gpFirst.getPosition();
final double gr = MathArrays.linearCombination(gpP.getX(), meridian.getX(),
gpP.getY(), meridian.getY());
final double gz = gpP.getZ();
// topocentric frame
final Vector3D east = new Vector3D(-meridian.getY(), meridian.getX(), 0);
final Vector3D zenith = new Vector3D(gr * getC() / getA(), meridian, gz * getA() / getC(), Vector3D.PLUS_K).normalize();
final Vector3D north = Vector3D.crossProduct(zenith, east);
// set up the ellipse corresponding to second principal curvature in the zenith/east plane
final Ellipse secondPrincipalCurvature = getPlaneSection(gpP, north);
final TimeStampedPVCoordinates gpSecond = secondPrincipalCurvature.projectToEllipse(pvInBodyFrame);
final Vector3D gpV = gpFirst.getVelocity().add(gpSecond.getVelocity());
final Vector3D gpA = gpFirst.getAcceleration().add(gpSecond.getAcceleration());
// moving projected point
final TimeStampedPVCoordinates groundPV =
new TimeStampedPVCoordinates(pv.getDate(), gpP, gpV, gpA);
// transform moving projected point back to initial frame
return toBody.getInverse().transformPVCoordinates(groundPV);
}
/** {@inheritDoc}
*
* This method is based on Toshio Fukushima's algorithm which uses Halley's method.
*
* transformation from Cartesian to Geodetic Coordinates Accelerated by Halley's Method,
* Toshio Fukushima, Journal of Geodesy 9(12):689-693, February 2006
*
*
* Some changes have been added to the original method:
*
* - in order to handle more accurately corner cases near the pole
* - in order to handle properly corner cases near the equatorial plane, even far inside the ellipsoid
* - in order to handle very flat ellipsoids
*
*
*/
public GeodeticPoint transform(final Vector3D point, final Frame frame, final AbsoluteDate date) {
// transform point to body frame
final Vector3D pointInBodyFrame = frame.getTransformTo(bodyFrame, date).transformPosition(point);
final double r2 = pointInBodyFrame.getX() * pointInBodyFrame.getX() +
pointInBodyFrame.getY() * pointInBodyFrame.getY();
final double r = FastMath.sqrt(r2);
final double z = pointInBodyFrame.getZ();
final double lambda = FastMath.atan2(pointInBodyFrame.getY(), pointInBodyFrame.getX());
double h;
double phi;
if (r <= ANGULAR_THRESHOLD * FastMath.abs(z)) {
// the point is almost on the polar axis, approximate the ellipsoid with
// the osculating sphere whose center is at evolute cusp along polar axis
final double osculatingRadius = ae2 / getC();
final double evoluteCuspZ = FastMath.copySign(getA() * e2 / g, -z);
final double deltaZ = z - evoluteCuspZ;
// we use π/2 - atan(r/Δz) instead of atan(Δz/r) for accuracy purposes, as r is much smaller than Δz
phi = FastMath.copySign(0.5 * FastMath.PI - FastMath.atan(r / FastMath.abs(deltaZ)), deltaZ);
h = FastMath.hypot(deltaZ, r) - osculatingRadius;
} else if (FastMath.abs(z) <= ANGULAR_THRESHOLD * r) {
// the point is almost on the major axis
final double osculatingRadius = ap2 / getA();
final double evoluteCuspR = getA() * e2;
final double deltaR = r - evoluteCuspR;
if (deltaR >= 0) {
// the point is outside of the ellipse evolute, approximate the ellipse
// with the osculating circle whose center is at evolute cusp along major axis
phi = (deltaR == 0) ? 0.0 : FastMath.atan(z / deltaR);
h = FastMath.hypot(deltaR, z) - osculatingRadius;
} else {
// the point is on the part of the major axis within ellipse evolute
// we can compute the closest ellipse point analytically, and it is NOT near the equator
final double rClose = r / e2;
final double zClose = FastMath.copySign(g * FastMath.sqrt(ae2 - rClose * rClose), z);
phi = FastMath.atan((zClose - z) / (rClose - r));
h = -FastMath.hypot(r - rClose, z - zClose);
}
} else {
// use Toshio Fukushima method, with several iterations
final double epsPhi = 1.0e-15;
final double epsH = 1.0e-14 * FastMath.max(getA(), FastMath.sqrt(r2 + z * z));
final double c = getA() * e2;
final double absZ = FastMath.abs(z);
final double zc = g * absZ;
double sn = absZ;
double sn2 = sn * sn;
double cn = g * r;
double cn2 = cn * cn;
double an2 = cn2 + sn2;
double an = FastMath.sqrt(an2);
double bn = 0;
phi = Double.POSITIVE_INFINITY;
h = Double.POSITIVE_INFINITY;
for (int i = 0; i < 10; ++i) { // this usually converges in 2 iterations
final double oldSn = sn;
final double oldCn = cn;
final double oldPhi = phi;
final double oldH = h;
final double an3 = an2 * an;
final double csncn = c * sn * cn;
bn = 1.5 * csncn * ((r * sn - zc * cn) * an - csncn);
sn = (zc * an3 + c * sn2 * sn) * an3 - bn * sn;
cn = (r * an3 - c * cn2 * cn) * an3 - bn * cn;
if (sn * oldSn < 0 || cn < 0) {
// the Halley iteration went too far, we restrict it and iterate again
while (sn * oldSn < 0 || cn < 0) {
sn = (sn + oldSn) / 2;
cn = (cn + oldCn) / 2;
}
} else {
// rescale components to avoid overflow when several iterations are used
final int exp = (FastMath.getExponent(sn) + FastMath.getExponent(cn)) / 2;
sn = FastMath.scalb(sn, -exp);
cn = FastMath.scalb(cn, -exp);
sn2 = sn * sn;
cn2 = cn * cn;
an2 = cn2 + sn2;
an = FastMath.sqrt(an2);
final double cc = g * cn;
h = (r * cc + absZ * sn - getA() * g * an) / FastMath.sqrt(an2 - e2 * cn2);
if (FastMath.abs(oldH - h) < epsH) {
phi = FastMath.copySign(FastMath.atan(sn / cc), z);
if (FastMath.abs(oldPhi - phi) < epsPhi) {
break;
}
}
}
}
}
return new GeodeticPoint(phi, lambda, h);
}
/** {@inheritDoc}
*
* This method is based on Toshio Fukushima's algorithm which uses Halley's method.
*
* transformation from Cartesian to Geodetic Coordinates Accelerated by Halley's Method,
* Toshio Fukushima, Journal of Geodesy 9(12):689-693, February 2006
*
*
* Some changes have been added to the original method:
*
* - in order to handle more accurately corner cases near the pole
* - in order to handle properly corner cases near the equatorial plane, even far inside the ellipsoid
* - in order to handle very flat ellipsoids
*
*
*/
public > FieldGeodeticPoint transform(final FieldVector3D point,
final Frame frame,
final FieldAbsoluteDate date) {
// transform point to body frame
final FieldVector3D pointInBodyFrame = frame.getTransformTo(bodyFrame, date).transformPosition(point);
final T r2 = pointInBodyFrame.getX().multiply(pointInBodyFrame.getX()).
add(pointInBodyFrame.getY().multiply(pointInBodyFrame.getY()));
final T r = r2.sqrt();
final T z = pointInBodyFrame.getZ();
final T lambda = pointInBodyFrame.getY().atan2(pointInBodyFrame.getX());
T h;
T phi;
if (r.getReal() <= ANGULAR_THRESHOLD * FastMath.abs(z.getReal())) {
// the point is almost on the polar axis, approximate the ellipsoid with
// the osculating sphere whose center is at evolute cusp along polar axis
final double osculatingRadius = ae2 / getC();
final double evoluteCuspZ = FastMath.copySign(getA() * e2 / g, -z.getReal());
final T deltaZ = z.subtract(evoluteCuspZ);
// we use π/2 - atan(r/Δz) instead of atan(Δz/r) for accuracy purposes, as r is much smaller than Δz
phi = r.divide(deltaZ.abs()).atan().negate().add(0.5 * FastMath.PI).copySign(deltaZ);
h = deltaZ.hypot(r).subtract(osculatingRadius);
} else if (FastMath.abs(z.getReal()) <= ANGULAR_THRESHOLD * r.getReal()) {
// the point is almost on the major axis
final double osculatingRadius = ap2 / getA();
final double evoluteCuspR = getA() * e2;
final T deltaR = r.subtract(evoluteCuspR);
if (deltaR.getReal() >= 0) {
// the point is outside of the ellipse evolute, approximate the ellipse
// with the osculating circle whose center is at evolute cusp along major axis
phi = (deltaR.getReal() == 0) ? z.getField().getZero() : z.divide(deltaR).atan();
h = deltaR.hypot(z).subtract(osculatingRadius);
} else {
// the point is on the part of the major axis within ellipse evolute
// we can compute the closest ellipse point analytically, and it is NOT near the equator
final T rClose = r.divide(e2);
final T zClose = rClose.multiply(rClose).negate().add(ae2).sqrt().multiply(g).copySign(z);
phi = zClose.subtract(z).divide(rClose.subtract(r)).atan();
h = r.subtract(rClose).hypot(z.subtract(zClose)).negate();
}
} else {
// use Toshio Fukushima method, with several iterations
final double epsPhi = 1.0e-15;
final double epsH = 1.0e-14 * getA();
final double c = getA() * e2;
final T absZ = z.abs();
final T zc = absZ.multiply(g);
T sn = absZ;
T sn2 = sn.multiply(sn);
T cn = r.multiply(g);
T cn2 = cn.multiply(cn);
T an2 = cn2.add(sn2);
T an = an2.sqrt();
T bn = an.getField().getZero();
phi = an.getField().getZero().add(Double.POSITIVE_INFINITY);
h = an.getField().getZero().add(Double.POSITIVE_INFINITY);
for (int i = 0; i < 10; ++i) { // this usually converges in 2 iterations
final T oldSn = sn;
final T oldCn = cn;
final T oldPhi = phi;
final T oldH = h;
final T an3 = an2.multiply(an);
final T csncn = sn.multiply(cn).multiply(c);
bn = csncn.multiply(1.5).multiply((r.multiply(sn).subtract(zc.multiply(cn))).multiply(an).subtract(csncn));
sn = zc.multiply(an3).add(sn2.multiply(sn).multiply(c)).multiply(an3).subtract(bn.multiply(sn));
cn = r.multiply(an3).subtract(cn2.multiply(cn).multiply(c)).multiply(an3).subtract(bn.multiply(cn));
if (sn.getReal() * oldSn.getReal() < 0 || cn.getReal() < 0) {
// the Halley iteration went too far, we restrict it and iterate again
while (sn.getReal() * oldSn.getReal() < 0 || cn.getReal() < 0) {
sn = sn.add(oldSn).multiply(0.5);
cn = cn.add(oldCn).multiply(0.5);
}
} else {
// rescale components to avoid overflow when several iterations are used
final int exp = (FastMath.getExponent(sn.getReal()) + FastMath.getExponent(cn.getReal())) / 2;
sn = sn.scalb(-exp);
cn = cn.scalb(-exp);
sn2 = sn.multiply(sn);
cn2 = cn.multiply(cn);
an2 = cn2.add(sn2);
an = an2.sqrt();
final T cc = cn.multiply(g);
h = r.multiply(cc).add(absZ.multiply(sn)).subtract(an.multiply(getA() * g)).divide(an2.subtract(cn2.multiply(e2)).sqrt());
if (FastMath.abs(oldH.getReal() - h.getReal()) < epsH) {
phi = sn.divide(cc).atan().copySign(z);
if (FastMath.abs(oldPhi.getReal() - phi.getReal()) < epsPhi) {
break;
}
}
}
}
}
return new FieldGeodeticPoint<>(phi, lambda, h);
}
/** Transform a Cartesian point to a surface-relative point.
* @param point Cartesian point
* @param frame frame in which Cartesian point is expressed
* @param date date of the computation (used for frames conversions)
* @return point at the same location but as a surface-relative point,
* using time as the single derivation parameter
*/
public FieldGeodeticPoint transform(final PVCoordinates point,
final Frame frame, final AbsoluteDate date) {
// transform point to body frame
final Transform toBody = frame.getTransformTo(bodyFrame, date);
final PVCoordinates pointInBodyFrame = toBody.transformPVCoordinates(point);
final FieldVector3D p = pointInBodyFrame.toDerivativeStructureVector(2);
final DerivativeStructure pr2 = p.getX().multiply(p.getX()).add(p.getY().multiply(p.getY()));
final DerivativeStructure pr = pr2.sqrt();
final DerivativeStructure pz = p.getZ();
// project point on the ellipsoid surface
final TimeStampedPVCoordinates groundPoint = projectToGround(new TimeStampedPVCoordinates(date, pointInBodyFrame),
bodyFrame);
final FieldVector3D gp = groundPoint.toDerivativeStructureVector(2);
final DerivativeStructure gpr2 = gp.getX().multiply(gp.getX()).add(gp.getY().multiply(gp.getY()));
final DerivativeStructure gpr = gpr2.sqrt();
final DerivativeStructure gpz = gp.getZ();
// relative position of test point with respect to its ellipse sub-point
final DerivativeStructure dr = pr.subtract(gpr);
final DerivativeStructure dz = pz.subtract(gpz);
final double insideIfNegative = g2 * (pr2.getReal() - ae2) + pz.getReal() * pz.getReal();
return new FieldGeodeticPoint<>(DerivativeStructure.atan2(gpz, gpr.multiply(g2)),
DerivativeStructure.atan2(p.getY(), p.getX()),
DerivativeStructure.hypot(dr, dz).copySign(insideIfNegative));
}
/** Replace the instance with a data transfer object for serialization.
*
* This intermediate class serializes the files supported names, the
* ephemeris type and the body name.
*
* @return data transfer object that will be serialized
*/
private Object writeReplace() {
return new DataTransferObject(getA(), f, bodyFrame, angularThreshold);
}
/** Internal class used only for serialization. */
private static class DataTransferObject implements Serializable {
/** Serializable UID. */
private static final long serialVersionUID = 20130518L;
/** Equatorial radius. */
private final double ae;
/** Flattening. */
private final double f;
/** Body frame related to body shape. */
private final Frame bodyFrame;
/** Convergence limit. */
private final double angularThreshold;
/** Simple constructor.
* @param ae equatorial radius
* @param f the flattening (f = (a-b)/a)
* @param bodyFrame body frame related to body shape
* @param angularThreshold convergence limit
*/
DataTransferObject(final double ae, final double f,
final Frame bodyFrame, final double angularThreshold) {
this.ae = ae;
this.f = f;
this.bodyFrame = bodyFrame;
this.angularThreshold = angularThreshold;
}
/** Replace the deserialized data transfer object with a
* {@link JPLCelestialBody}.
* @return replacement {@link JPLCelestialBody}
*/
private Object readResolve() {
final OneAxisEllipsoid ellipsoid = new OneAxisEllipsoid(ae, f, bodyFrame);
ellipsoid.setAngularThreshold(angularThreshold);
return ellipsoid;
}
}
}