All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.orekit.frames.Frame Maven / Gradle / Ivy

Go to download

OREKIT (ORbits Extrapolation KIT) is a low level space dynamics library. It provides basic elements (orbits, dates, attitude, frames ...) and various algorithms to handle them (conversions, analytical and numerical propagation, pointing ...).

There is a newer version: 12.2
Show newest version
/* Copyright 2002-2019 CS Systèmes d'Information
 * Licensed to CS Systèmes d'Information (CS) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * CS licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.orekit.frames;

import java.io.Serializable;

import org.hipparchus.RealFieldElement;
import org.orekit.errors.OrekitIllegalArgumentException;
import org.orekit.errors.OrekitMessages;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;


/** Tridimensional references frames class.
 *
 * 

Frame Presentation

*

This class is the base class for all frames in OREKIT. The frames are * linked together in a tree with some specific frame chosen as the root of the tree. * Each frame is defined by {@link Transform transforms} combining any number * of translations and rotations from a reference frame which is its * parent frame in the tree structure.

*

When we say a {@link Transform transform} t is from frameA * to frameB, we mean that if the coordinates of some absolute * vector (say the direction of a distant star for example) has coordinates * uA in frameA and uB in frameB, * then uB={@link * Transform#transformVector(org.hipparchus.geometry.euclidean.threed.Vector3D) * t.transformVector(uA)}. *

The transforms may be constant or varying, depending on the implementation of * the {@link TransformProvider transform provider} used to define the frame. For simple * fixed transforms, using {@link FixedTransformProvider} is sufficient. For varying * transforms (time-dependent or telemetry-based for example), it may be useful to define * specific implementations of {@link TransformProvider transform provider}.

* * @author Guylaine Prat * @author Luc Maisonobe * @author Pascal Parraud */ public class Frame implements Serializable { /** Serializable UID. */ private static final long serialVersionUID = -6981146543760234087L; /** Parent frame (only the root frame doesn't have a parent). */ private final Frame parent; /** Depth of the frame with respect to tree root. */ private final int depth; /** Provider for transform from parent frame to instance. */ private final TransformProvider transformProvider; /** Instance name. */ private final String name; /** Indicator for pseudo-inertial frames. */ private final boolean pseudoInertial; /** Private constructor used only for the root frame. * @param name name of the frame * @param pseudoInertial true if frame is considered pseudo-inertial * (i.e. suitable for propagating orbit) */ private Frame(final String name, final boolean pseudoInertial) { parent = null; depth = 0; transformProvider = new FixedTransformProvider(Transform.IDENTITY); this.name = name; this.pseudoInertial = pseudoInertial; } /** Build a non-inertial frame from its transform with respect to its parent. *

calling this constructor is equivalent to call * {link {@link #Frame(Frame, Transform, String, boolean) * Frame(parent, transform, name, false)}.

* @param parent parent frame (must be non-null) * @param transform transform from parent frame to instance * @param name name of the frame * @exception IllegalArgumentException if the parent frame is null */ public Frame(final Frame parent, final Transform transform, final String name) throws IllegalArgumentException { this(parent, transform, name, false); } /** Build a non-inertial frame from its transform with respect to its parent. *

calling this constructor is equivalent to call * {link {@link #Frame(Frame, Transform, String, boolean) * Frame(parent, transform, name, false)}.

* @param parent parent frame (must be non-null) * @param transformProvider provider for transform from parent frame to instance * @param name name of the frame * @exception IllegalArgumentException if the parent frame is null */ public Frame(final Frame parent, final TransformProvider transformProvider, final String name) throws IllegalArgumentException { this(parent, transformProvider, name, false); } /** Build a frame from its transform with respect to its parent. *

The convention for the transform is that it is from parent * frame to instance. This means that the two following frames * are similar:

*
     * Frame frame1 = new Frame(FramesFactory.getGCRF(), new Transform(t1, t2));
     * Frame frame2 = new Frame(new Frame(FramesFactory.getGCRF(), t1), t2);
     * 
* @param parent parent frame (must be non-null) * @param transform transform from parent frame to instance * @param name name of the frame * @param pseudoInertial true if frame is considered pseudo-inertial * (i.e. suitable for propagating orbit) * @exception IllegalArgumentException if the parent frame is null */ public Frame(final Frame parent, final Transform transform, final String name, final boolean pseudoInertial) throws IllegalArgumentException { this(parent, new FixedTransformProvider(transform), name, pseudoInertial); } /** Build a frame from its transform with respect to its parent. *

The convention for the transform is that it is from parent * frame to instance. This means that the two following frames * are similar:

*
     * Frame frame1 = new Frame(FramesFactory.getGCRF(), new Transform(t1, t2));
     * Frame frame2 = new Frame(new Frame(FramesFactory.getGCRF(), t1), t2);
     * 
* @param parent parent frame (must be non-null) * @param transformProvider provider for transform from parent frame to instance * @param name name of the frame * @param pseudoInertial true if frame is considered pseudo-inertial * (i.e. suitable for propagating orbit) * @exception IllegalArgumentException if the parent frame is null */ public Frame(final Frame parent, final TransformProvider transformProvider, final String name, final boolean pseudoInertial) throws IllegalArgumentException { if (parent == null) { throw new OrekitIllegalArgumentException(OrekitMessages.NULL_PARENT_FOR_FRAME, name); } this.parent = parent; this.depth = parent.depth + 1; this.transformProvider = transformProvider; this.name = name; this.pseudoInertial = pseudoInertial; } /** Get the name. * @return the name */ public String getName() { return this.name; } /** Check if the frame is pseudo-inertial. *

Pseudo-inertial frames are frames that do have a linear motion and * either do not rotate or rotate at a very low rate resulting in * neglectible inertial forces. This means they are suitable for orbit * definition and propagation using Newtonian mechanics. Frames that are * not pseudo-inertial are not suitable for orbit * definition and propagation.

* @return true if frame is pseudo-inertial */ public boolean isPseudoInertial() { return pseudoInertial; } /** New definition of the java.util toString() method. * @return the name */ public String toString() { return this.name; } /** Get the parent frame. * @return parent frame */ public Frame getParent() { return parent; } /** Get the depth of the frame. *

* The depth of a frame is the number of parents frame between * it and the frames tree root. It is 0 for the root frame, and * the depth of a frame is the depth of its parent frame plus one. *

* @return depth of the frame */ public int getDepth() { return depth; } /** Get the nth ancestor of the frame. * @param n index of the ancestor (0 is the instance, 1 is its parent, * 2 is the parent of its parent...) * @return nth ancestor of the frame (must be between 0 * and the depth of the frame) * @exception IllegalArgumentException if n is larger than the depth * of the instance */ public Frame getAncestor(final int n) throws IllegalArgumentException { // safety check if (n > depth) { throw new OrekitIllegalArgumentException(OrekitMessages.FRAME_NO_NTH_ANCESTOR, name, depth, n); } // go upward to find ancestor Frame current = this; for (int i = 0; i < n; ++i) { current = current.parent; } return current; } /** Get the transform from the instance to another frame. * @param destination destination frame to which we want to transform vectors * @param date the date (can be null if it is sure than no date dependent frame is used) * @return transform from the instance to the destination frame */ public Transform getTransformTo(final Frame destination, final AbsoluteDate date) { if (this == destination) { // shortcut for special case that may be frequent return Transform.IDENTITY; } // common ancestor to both frames in the frames tree final Frame common = findCommon(this, destination); // transform from common to instance Transform commonToInstance = Transform.IDENTITY; for (Frame frame = this; frame != common; frame = frame.parent) { commonToInstance = new Transform(date, frame.transformProvider.getTransform(date), commonToInstance); } // transform from destination up to common Transform commonToDestination = Transform.IDENTITY; for (Frame frame = destination; frame != common; frame = frame.parent) { commonToDestination = new Transform(date, frame.transformProvider.getTransform(date), commonToDestination); } // transform from instance to destination via common return new Transform(date, commonToInstance.getInverse(), commonToDestination); } /** Get the transform from the instance to another frame. * @param destination destination frame to which we want to transform vectors * @param date the date (can be null if it is sure than no date dependent frame is used) * @param the type of the field elements * @return transform from the instance to the destination frame */ public > FieldTransform getTransformTo(final Frame destination, final FieldAbsoluteDate date) { if (this == destination) { // shortcut for special case that may be frequent return FieldTransform.getIdentity(date.getField()); } // common ancestor to both frames in the frames tree final Frame common = findCommon(this, destination); // transform from common to instance FieldTransform commonToInstance = FieldTransform.getIdentity(date.getField()); for (Frame frame = this; frame != common; frame = frame.parent) { commonToInstance = new FieldTransform<>(date, frame.transformProvider.getTransform(date), commonToInstance); } // transform from destination up to common FieldTransform commonToDestination = FieldTransform.getIdentity(date.getField()); for (Frame frame = destination; frame != common; frame = frame.parent) { commonToDestination = new FieldTransform<>(date, frame.transformProvider.getTransform(date), commonToDestination); } // transform from instance to destination via common return new FieldTransform<>(date, commonToInstance.getInverse(), commonToDestination); } /** Get the provider for transform from parent frame to instance. * @return provider for transform from parent frame to instance */ public TransformProvider getTransformProvider() { return transformProvider; } /** Find the deepest common ancestor of two frames in the frames tree. * @param from origin frame * @param to destination frame * @return an ancestor frame of both from and to */ private static Frame findCommon(final Frame from, final Frame to) { // select deepest frames that could be the common ancestor Frame currentF = from.depth > to.depth ? from.getAncestor(from.depth - to.depth) : from; Frame currentT = from.depth > to.depth ? to : to.getAncestor(to.depth - from.depth); // go upward until we find a match while (currentF != currentT) { currentF = currentF.parent; currentT = currentT.parent; } return currentF; } /** Determine if a Frame is a child of another one. * @param potentialAncestor supposed ancestor frame * @return true if the potentialAncestor belongs to the * path from instance to the root frame, excluding itself */ public boolean isChildOf(final Frame potentialAncestor) { if (depth <= potentialAncestor.depth) { return false; } return getAncestor(depth - potentialAncestor.depth) == potentialAncestor; } /** Get the unique root frame. * @return the unique instance of the root frame */ protected static Frame getRoot() { return LazyRootHolder.INSTANCE; } /** Get a new version of the instance, frozen with respect to a reference frame. *

* Freezing a frame consist in computing its position and orientation with respect * to another frame at some freezing date and fixing them so they do not depend * on time anymore. This means the frozen frame is fixed with respect to the * reference frame. *

*

* One typical use of this method is to compute an inertial launch reference frame * by freezing a {@link TopocentricFrame topocentric frame} at launch date * with respect to an inertial frame. Another use is to freeze an equinox-related * celestial frame at a reference epoch date. *

*

* Only the frame returned by this method is frozen, the instance by itself * is not affected by calling this method and still moves freely. *

* @param reference frame with respect to which the instance will be frozen * @param freezingDate freezing date * @param frozenName name of the frozen frame * @return a frozen version of the instance */ public Frame getFrozenFrame(final Frame reference, final AbsoluteDate freezingDate, final String frozenName) { return new Frame(reference, reference.getTransformTo(this, freezingDate).freeze(), frozenName, reference.isPseudoInertial()); } // We use the Initialization on demand holder idiom to store // the singletons, as it is both thread-safe, efficient (no // synchronization) and works with all versions of java. /** Holder for the root frame singleton. */ private static class LazyRootHolder { /** Unique instance. */ private static final Frame INSTANCE = new Frame(Predefined.GCRF.getName(), true) { /** Serializable UID. */ private static final long serialVersionUID = -2654403496396721543L; /** Replace the instance with a data transfer object for serialization. *

* This intermediate class serializes nothing. *

* @return data transfer object that will be serialized */ private Object writeReplace() { return new DataTransferObject(); } }; /** Private constructor. *

This class is a utility class, it should neither have a public * nor a default constructor. This private constructor prevents * the compiler from generating one automatically.

*/ private LazyRootHolder() { } } /** Internal class used only for serialization. */ private static class DataTransferObject implements Serializable { /** Serializable UID. */ private static final long serialVersionUID = 4067764035816491212L; /** Simple constructor. */ private DataTransferObject() { } /** Replace the deserialized data transfer object with a {@link FactoryManagedFrame}. * @return replacement {@link FactoryManagedFrame} */ private Object readResolve() { return getRoot(); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy