org.orekit.rugged.adjustment.LeastSquareAdjuster Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rugged Show documentation
Show all versions of rugged Show documentation
Rugged is an Orekit add-on handling Digital Elevation Models
contribution to line of sight computation
/* Copyright 2013-2019 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.rugged.adjustment;
import org.hipparchus.linear.LUDecomposer;
import org.hipparchus.linear.QRDecomposer;
import org.hipparchus.optim.nonlinear.vector.leastsquares.GaussNewtonOptimizer;
import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresOptimizer;
import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresOptimizer.Optimum;
import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem;
import org.hipparchus.optim.nonlinear.vector.leastsquares.LevenbergMarquardtOptimizer;
import org.orekit.rugged.errors.RuggedInternalError;
/** LeastSquareAdjuster
* Class for setting least square algorithm chosen for solving optimization problem.
* @author Jonathan Guinet
* @author Lucie Labat-Allee
* @author Guylaine Prat
* @since 2.0
*/
public class LeastSquareAdjuster {
/** Least square optimizer.*/
private final LeastSquaresOptimizer adjuster;
/** Least square optimizer choice.*/
private final OptimizerId optimizerID;
/** Constructor.
* @param optimizerID optimizer choice
*/
public LeastSquareAdjuster(final OptimizerId optimizerID) {
this.optimizerID = optimizerID;
this.adjuster = this.selectOptimizer();
}
/** Default constructor with Gauss Newton with QR decomposition algorithm.*/
public LeastSquareAdjuster() {
this.optimizerID = OptimizerId.GAUSS_NEWTON_QR;
this.adjuster = this.selectOptimizer();
}
/** Solve the least square problem.
* @param problem the least square problem
* @return the solution
*/
public Optimum optimize(final LeastSquaresProblem problem) {
return this.adjuster.optimize(problem);
}
/** Create the optimizer.
* @return the least square optimizer
*/
private LeastSquaresOptimizer selectOptimizer() {
// Set up the optimizer
switch (this.optimizerID) {
case LEVENBERG_MARQUADT:
return new LevenbergMarquardtOptimizer();
case GAUSS_NEWTON_LU :
return new GaussNewtonOptimizer(new LUDecomposer(1e-11), true);
case GAUSS_NEWTON_QR :
return new GaussNewtonOptimizer(new QRDecomposer(1e-11), false);
default :
// this should never happen
throw new RuggedInternalError(null);
}
}
}