org.pepstock.charba.client.ml.ExponentialRegression Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of charba Show documentation
Show all versions of charba Show documentation
Charba, GWT Chart library based on CHART.JS
/**
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.
*/
package org.pepstock.charba.client.ml;
import java.util.Arrays;
import java.util.List;
import org.pepstock.charba.client.commons.ArrayDouble;
import org.pepstock.charba.client.enums.RegressionType;
/**
* Exponential regression is a non-linear regression technique that looks like this:
*
* y = A * eB * x
*
*
* @author Andrea "Stock" Stocchero
*
*/
public final class ExponentialRegression extends BaseRegression {
// coefficients
private final List coefficients;
/**
* Creates the exponential regression object, using the passed regression descriptor.
*
* @param descriptor regression description used to create new regression
*/
ExponentialRegression(RegressionDescriptor descriptor) {
super(RegressionType.EXPONENTIAL, NativeExponentialRegression.load(descriptor));
// stores coefficients
this.coefficients = Arrays.asList(getA(), getB());
}
/**
* Creates the exponential regression object, using the passed data to calculate the formula.
*
* @param x values bound to x
* @param y values bound to y
*/
ExponentialRegression(List x, List y) {
super(RegressionType.EXPONENTIAL, new NativeExponentialRegression(ArrayDouble.fromOrEmpty(x), ArrayDouble.fromOrEmpty(y)));
// stores coefficients
this.coefficients = Arrays.asList(getA(), getB());
}
/**
* Returns the A coefficient.
*
* @return the A coefficient
*/
public double getA() {
return getNativeBaseRegression().getA();
}
/**
* Returns the B coefficient.
*
* @return the B coefficient
*/
public double getB() {
return getNativeBaseRegression().getB();
}
/*
* (non-Javadoc)
*
* @see org.pepstock.charba.client.ml.IsRegression#getCoefficients()
*/
@Override
public List getCoefficients() {
return coefficients;
}
}