All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.plumelib.util.GraphPlume Maven / Gradle / Ivy

There is a newer version: 1.10.0
Show newest version
package org.plumelib.util;

import java.io.PrintStream;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
import org.checkerframework.checker.nullness.qual.KeyFor;
import org.checkerframework.checker.nullness.qual.NonNull;

/** Graph utility methods. This class does not model a graph: all methods are static. */
public final class GraphPlume {

  /** This class is a collection of methods; it does not represent anything. */
  private GraphPlume() {
    throw new Error("do not instantiate");
  }

  // Algorithms for computing dominators:
  //
  // Wikipedia:
  //  // dominator of the start node is the start itself
  //  Dom(n_0) = {n_0}
  //  // for all other nodes, set all nodes as the dominators
  //  for each n in N - {n_0}
  //      Dom(n) = N;
  //  // iteratively eliminate nodes that are not dominators
  //  while changes in any Dom(n)
  //      for each n in N - {n_0}:
  //          Dom(n) = {n} union with intersection over all p in pred(n) of Dom(p)
  //
  // Cooper/Harvey/Kennedy:
  //  for all nodes, n
  //    DOM[n] := {1 . . .N}
  //  Changed := true
  //  while (Changed)
  //    Changed := false
  //    for all nodes, n, in reverse postorder
  //      new_set := (Intersect_{p:=preds(n)} DOM[p]) union {n}
  //      if (new_set != DOM[n])
  //        DOM[n] := new_set
  //        Changed := true

  // The two algorithms are essentially the same; this implementation
  // follows the Wikipedia one.

  /**
   * Computes, for each node in the graph, its set of (pre-)dominators. Supply a successor graph if
   * you want post-dominators.
   *
   * @param  type of the graph nodes
   * @param predecessors a graph, represented as a predecessor map
   * @return a map from each node to a list of its pre-dominators
   */
  public static  Map> dominators(
      Map> predecessors) {

    // Map<@KeyFor({"preds","dom"}) T,List<@KeyFor({"preds","dom"}) T>> dom
    //   = new HashMap<>();
    Map> dom = new HashMap<>();

    @SuppressWarnings("keyfor") // every element of pred's value will be a key for dom
    Map> preds = predecessors;

    List nodes = new ArrayList<>(preds.keySet());

    // Compute roots & non-roots, for convenience
    List<@KeyFor({"preds", "dom"}) T> roots = new ArrayList<>();
    List<@KeyFor({"preds", "dom"}) T> nonRoots = new ArrayList<>();

    // Initialize result:  for roots just the root, otherwise everything
    for (T node : preds.keySet()) {
      if (preds.get(node).isEmpty()) {
        // This is a root.  Its only dominator is itself.
        Set set = Collections.singleton(node);
        dom.put(node, new ArrayList(set));
        roots.add(node);
      } else {
        // Initially, set all nodes as dominators;
        // will later remove nodes that aren't dominators.
        dom.put(node, new ArrayList(nodes));
        nonRoots.add(node);
      }
    }
    assert roots.size() + nonRoots.size() == nodes.size();

    // Invariants:
    // preds and dom have the same keyset.
    // All of the following are keys for both preds and dom:
    //  * every key in pred
    //  * every element of every pred value
    //  * every key in dom
    //  * every element of every dom value
    // So, the type of pred is now
    //
    // rather than its original type
    //   Map> preds

    boolean changed = true;
    while (changed) {
      changed = false;
      for (T node : nonRoots) {
        List newDoms = null;
        assert preds.containsKey(node);
        for (T pred : preds.get(node)) {
          assert dom.containsKey(pred);
          @NonNull List domOfPred = dom.get(pred);
          if (newDoms == null) {
            // make copy because we may side-effect newDoms
            newDoms = new ArrayList(domOfPred);
          } else {
            newDoms.retainAll(domOfPred);
          }
        }
        assert newDoms != null
            : "@AssumeAssertion(nullness): the loop was entered at least once because"
                + " this is a non-root, which has at least one predecessor";
        newDoms.add(node);
        assert dom.containsKey(node);
        if (!dom.get(node).equals(newDoms)) {
          dom.put(node, newDoms);
          changed = true;
        }
      }
    }

    for (T node : preds.keySet()) {
      // TODO: The following two assert statements would be easier to read
      // than the one combined one, but a bug (TODO:  Jonathan will add a
      // bug number) prevents it from type-checking.
      // assert dom.containsKey(node);
      // assert dom.get(node).contains(node);
      assert dom.containsKey(node) && dom.get(node).contains(node);
    }

    return dom;
  }

  /**
   * Print a representation of the graph to ps, indented by intent spaces.
   *
   * @param  the type of nodes of the graph
   * @param graph the graph to print
   * @param ps the PrintStream to which to print the graph
   * @param indent the number of spaces by which to indent the printed representation
   */
  public static  void print(
      Map> graph, PrintStream ps, int indent) {
    String indentString = "";
    for (int i = 0; i < indent; i++) {
      indentString += " ";
    }
    for (T node : graph.keySet()) {
      ps.printf("%s%s%n", indentString, node);
      for (T child : graph.get(node)) {
        ps.printf("  %s%s%n", indentString, child);
      }
    }
  }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy