org.pmml4s.common.ComparisonMeasure.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml4s_2.11 Show documentation
Show all versions of pmml4s_2.11 Show documentation
A PMML scoring library in Scala
The newest version!
/*
* Copyright (c) 2017-2019 AutoDeploy AI
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.pmml4s.common
import org.pmml4s.common.CompareFunction.CompareFunction
import org.pmml4s.common.ComparisonMeasureKind.ComparisonMeasureKind
import org.pmml4s.xml.ElemTags
class ComparisonMeasure(
val kind: ComparisonMeasureKind,
val distance: Distance,
val compareFunction: CompareFunction = CompareFunction.absDiff,
val minimum: Option[Double] = None,
val maximum: Option[Double] = None) extends PmmlElement
object ComparisonMeasureKind extends Enumeration {
type ComparisonMeasureKind = Value
val distance, similarity = Value
}
trait Distance extends PmmlElement {
def distance(nonMissing: Array[Int],
fs: Array[CompareFunction],
xs: Array[Double],
ys: Array[Double],
weights: Array[Double],
adjustM: Double = 1.0,
s: Array[Double]): Double
def matrix(xs: Array[Double], ys: Array[Double]) = {
var a11, a10, a01, a00 = 0.0
var i = 0
while (i < xs.length) {
if (xs(i) == 0 && ys(i) == 0) {
a00 += 1
} else if (xs(i) == 0 && ys(i) == 1) {
a01 += 1
} else if (xs(i) == 1 && ys(i) == 0) {
a10 += 1
} else if (xs(i) == 1 && ys(i) == 1) {
a11 += 1
}
i += 1
}
(a11, a10, a01, a00)
}
def compare(fun: CompareFunction, x: Double, y: Double, s: Double = Double.NaN): Double = {
import CompareFunction._
fun match {
case `absDiff` => Math.abs(x - y)
case `gaussSim` => Math.exp(-Math.log(2) * (x - y) * (x - y) / (s * s))
case `delta` => if (x == y) 0.0 else 1.0
case `equal` => if (x == y) 1.0 else 0.0
case `table` => ??? // TODO: table
}
}
}
object Distance {
import ElemTags._
val values = Set(EUCLIDEAN, SQUARED_EUCLIDEAN, CHEBYCHEV, CITY_BLOCK, MINKOWSKI, SIMPLE_MATCHING, JACCARD, TANIMOTO,
BINARY_SIMILARITY)
def contains(s: String) = values.contains(s)
}
object euclidean extends Distance {
override def distance(nonMissing: Array[Int], fs: Array[CompareFunction], xs: Array[Double], ys: Array[Double],
weights: Array[Double], adjustM: Double, s: Array[Double]): Double = {
var sum = 0.0
for (i <- nonMissing) {
val d = compare(fs(i), xs(i), ys(i), s(i))
sum += (d * d * weights(i))
}
Math.sqrt(sum * adjustM)
}
}
object squaredEuclidean extends Distance {
override def distance(nonMissing: Array[Int], fs: Array[CompareFunction], xs: Array[Double], ys: Array[Double],
weights: Array[Double], adjustM: Double, s: Array[Double]): Double = {
var sum = 0.0
for (i <- nonMissing) {
val d = compare(fs(i), xs(i), ys(i), s(i))
sum += (d * d * weights(i))
}
sum * adjustM
}
}
object chebychev extends Distance {
override def distance(nonMissing: Array[Int], fs: Array[CompareFunction], xs: Array[Double], ys: Array[Double],
weights: Array[Double], adjustM: Double, s: Array[Double]): Double = {
val arr = for (i <- nonMissing) yield compare(fs(i), xs(i), ys(i), s(i)) * weights(i)
arr.max * adjustM
}
}
object cityBlock extends Distance {
override def distance(nonMissing: Array[Int], fs: Array[CompareFunction], xs: Array[Double], ys: Array[Double],
weights: Array[Double], adjustM: Double, s: Array[Double]): Double = {
var sum = 0.0
for (i <- nonMissing) {
sum += (compare(fs(i), xs(i), ys(i), s(i)) * weights(i))
}
sum * adjustM
}
}
class minkowski(val p: Double) extends Distance {
override def distance(nonMissing: Array[Int], fs: Array[CompareFunction], xs: Array[Double], ys: Array[Double],
weights: Array[Double], adjustM: Double, s: Array[Double]): Double = {
var sum = 0.0
for (i <- nonMissing) {
val d = Math.pow(compare(fs(i), xs(i), ys(i), s(i)), p)
sum += (d * weights(i))
}
Math.pow(sum * adjustM, 1 / p)
}
}
object simpleMatching extends Distance {
override def distance(nonMissing: Array[Int], fs: Array[CompareFunction], xs: Array[Double], ys: Array[Double],
weights: Array[Double], adjustM: Double, s: Array[Double]): Double = {
val (a11, a10, a01, a00) = matrix(xs, ys)
(a11 + a00) / (a11 + a10 + a01 + a00)
}
}
object jaccard extends Distance {
override def distance(nonMissing: Array[Int], fs: Array[CompareFunction], xs: Array[Double], ys: Array[Double],
weights: Array[Double], adjustM: Double, s: Array[Double]): Double = {
val (a11, a10, a01, a00) = matrix(xs, ys)
(a11) / (a11 + a10 + a01)
}
}
object tanimoto extends Distance {
override def distance(nonMissing: Array[Int], fs: Array[CompareFunction], xs: Array[Double], ys: Array[Double],
weights: Array[Double], adjustM: Double, s: Array[Double]): Double = {
val (a11, a10, a01, a00) = matrix(xs, ys)
(a11 + a00) / (a11 + 2 * (a10 + a01) + a00)
}
}
class binarySimilarity(val c00: Double,
val c01: Double,
val c10: Double,
val c11: Double,
val d00: Double,
val d01: Double,
val d10: Double,
val d11: Double) extends Distance {
override def distance(nonMissing: Array[Int], fs: Array[CompareFunction], xs: Array[Double], ys: Array[Double],
weights: Array[Double], adjustM: Double, s: Array[Double]): Double = {
val (a11, a10, a01, a00) = matrix(xs, ys)
(c11 * a11 + c10 * a10 + c01 * a01 + c00 * a00) / (d11 * a11 + d10 * a10 + d01 * a01 + d00 * a00)
}
}
/**
* - absDiff: absolute difference c(x,y) = |x-y|
*
* - gaussSim: gaussian similarity c(x,y) = exp(-ln(2)*z*z/(s*s)) where z=x-y, and s is the value of attribute
* similarityScale (required in this case) in the ClusteringField
*
* - delta: c(x,y) = 0 if x=y, 1 else
*
* - equal: c(x,y) = 1 if x=y, 0 else
*
* - table: c(x,y) = lookup in similarity matrix
*/
object CompareFunction extends Enumeration {
type CompareFunction = Value
val absDiff, gaussSim, delta, equal, table = Value
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy