org.pmml4s.common.predictors.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml4s_2.11 Show documentation
Show all versions of pmml4s_2.11 Show documentation
A PMML scoring library in Scala
The newest version!
/*
* Copyright (c) 2017-2019 AutoDeploy AI
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.pmml4s.common
import org.pmml4s.data.{DataVal, Series}
import org.pmml4s.metadata.Field
import org.pmml4s.transformations.FieldRef
import org.pmml4s.util.Utils
import org.pmml4s.xml.ElemTags.{CATEGORICAL_PREDICTOR, NUMERIC_PREDICTOR, PREDICTOR_TERM}
sealed trait RegressionPredictor extends RegressionEvaluator {
def eval(series: Series): Double
}
object RegressionPredictor {
val values: Set[String] = Set(NUMERIC_PREDICTOR, CATEGORICAL_PREDICTOR, PREDICTOR_TERM)
def contains(s: String): Boolean = values.contains(s)
}
/**
* Defines a numeric independent variable. The list of valid attributes comprises the name of the variable,
* the exponent to be used, and the coefficient by which the values of this variable must be multiplied.
* Note that the exponent defaults to 1, hence it is not always necessary to specify. Also, if the input value
* is missing, the result evaluates to a missing value.
*/
class NumericPredictor(val field: Field, val coefficient: Double, val exponent: Int = 1) extends RegressionPredictor {
override def eval(series: Series): Double = if (field.isMissing(series)) Double.NaN else {
val value = field.getDouble(series)
if (exponent == 1) value * coefficient else Math.pow(value, exponent) * coefficient
}
}
/**
* Defines a categorical independent variable. The list of attributes comprises the name of the variable,
* the value attribute, and the coefficient by which the values of this variable must be multiplied.
*/
class CategoricalPredictor(val field: Field, val coefficient: Double, val value: DataVal) extends RegressionPredictor {
override def eval(series: Series): Double = if (field.isMissing(series) || field.get(series) != value) 0.0 else coefficient
}
/**
* Contains one or more fields that are combined by multiplication. That is, this element supports interaction terms.
* The type of all fields referenced within PredictorTerm must be continuous. Note that if the input value is missing,
* the result evaluates to a missing value.
*/
class PredictorTerm(val name: Option[String], val coefficient: Double, val fields: Array[FieldRef]) extends RegressionPredictor {
override def eval(series: Series): Double = {
var result = coefficient
for (f <- fields) {
val r = f.eval(series)
if (Utils.isMissing(r))
return Double.NaN
result *= Utils.toDouble(r)
}
result
}
}
/**
* Lists the values of all predictors or independent variables. If the model is used to predict a numerical field,
* then there is only one RegressionTable and the attribute targetCategory may be missing. If the model is used to predict a categorical field,
* then there are two or more RegressionTables and each one must have the attribute targetCategory defined with a unique value.
*/
class RegressionTable(val predictors: Array[RegressionPredictor], val intercept: Double, val targetCategory: Option[DataVal] = None) extends
RegressionPredictor {
override def eval(series: Series): Double = {
var result = intercept
for (predictor <- predictors) {
val r = predictor.eval(series)
if (Utils.isMissing(r))
return Double.NaN
result += r
}
result
}
}
class FactorPredictor(override val field: Field, override val value: DataVal) extends CategoricalPredictor(field, 1.0, value)
class ContrastMatrixFactorPredictor(override val field: Field, override val value: DataVal, val categories: Map[DataVal, Int], val matrix: Matrix)
extends FactorPredictor(field, value) {
private val colIdx: Int = categories(value)
override def eval(series: Series): Double = {
if (field.isMissing(series)) 0.0 else {
val rowIdx = categories(field.get(series))
matrix(rowIdx, colIdx)
}
}
}
class CovariatePredictor(val field: Field, val multiplicity: Double) extends RegressionPredictor {
override def eval(series: Series): Double = if (field.isMissing(series)) Double.NaN else {
val value = field.getDouble(series)
if (multiplicity == 1.0) value else Math.pow(value, multiplicity)
}
}
class RegressionParameter(val factors: Array[FactorPredictor], val covariates: Array[CovariatePredictor]) extends RegressionPredictor {
override def eval(series: Series): Double = {
var res = 1.0
if (factors.length > 0) {
for (f <- factors) {
val value = f.eval(series)
if (value == 0.0)
return 0.0
}
}
if (covariates.length > 0) {
for (c <- covariates) {
val value = c.eval(series)
if (value == 0.0)
return 0.0
res *= value
}
}
res
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy