org.pmml4s.metadata.output.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml4s_2.11 Show documentation
Show all versions of pmml4s_2.11 Show documentation
A PMML scoring library in Scala
The newest version!
/*
* Copyright (c) 2017-2023 AutoDeployAI
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.pmml4s.metadata
import org.pmml4s.PmmlDeprecated
import org.pmml4s.data.DataVal
import scala.collection.mutable
/** Result Features */
object ResultFeature extends Enumeration {
type ResultFeature = Value
val predictedValue, predictedDisplayValue, transformedValue, decision, probability, affinity, residual, standardError,
standardDeviation, clusterId, clusterAffinity, entityId, entityAffinity, warning, ruleValue, reasonCode, antecedent,
consequent, rule, ruleId, confidence, support, lift, leverage, confidenceIntervalLower, confidenceIntervalUpper = Value
}
/**
* Specifies which feature of an association rule to return.
* This attribute has been deprecated as of PMML 4.2.
* The rule feature values can now be specified in the feature attribute.
*/
@PmmlDeprecated(since = "4.2")
object RuleFeature extends Enumeration {
type RuleFeature = Value
val antecedent, consequent, rule, ruleId, confidence, support, lift, leverage, affinity = Value
}
/**
* Specifies which scoring algorithm to use when computing the output value.
* It applies only to Association Rules models.
*/
object Algorithm extends Enumeration {
type Algorithm = Value
val recommendation, exclusiveRecommendation, ruleAssociation = Value
}
/**
* Applies only to Association Rules and is used to specify which criterion is used to sort the output result.
* For instance, the result could be sorted by the confidence, support or lift of the rules.
*/
object RankBasis extends Enumeration {
type RankBasis = Value
val confidence, support, lift, leverage, affinity = Value
}
/**
* Determines the sorting order when ranking the results. The default behavior (rankOrder="descending")
* indicates that the result with the highest rank will appear first on the sorted list.
*/
object RankOrder extends Enumeration {
type RankOrder = Value
val descending, ascending = Value
}
import org.pmml4s.common._
import org.pmml4s.metadata.Algorithm.Algorithm
import org.pmml4s.metadata.RankBasis.RankBasis
import org.pmml4s.metadata.RankOrder.RankOrder
import org.pmml4s.metadata.ResultFeature.ResultFeature
import org.pmml4s.metadata.RuleFeature.RuleFeature
import org.pmml4s.model.Model
import org.pmml4s.transformations.Expression
/**
* OutputField elements specify names, types and rules for calculating specific result features. This information can
* be used while writing an output table.
*/
class OutputField(override val name: String,
override val displayName: Option[String],
override val dataType: DataType,
override val opType: OpType,
val feature: ResultFeature = ResultFeature.predictedValue,
val targetField: Option[String] = None,
val value: Option[DataVal] = None,
val ruleFeature: RuleFeature = RuleFeature.consequent,
val algorithm: Algorithm = Algorithm.exclusiveRecommendation,
val rank: Int = 1,
val rankBasis: RankBasis = RankBasis.confidence,
val rankOrder: RankOrder = RankOrder.descending,
val isMultiValued: Boolean = false,
val segmentId: Option[String] = None,
val isFinalResult: Boolean = true,
val decisions: Option[Decisions] = None,
val expr: Option[Expression] = None) extends AbstractField with PmmlElement {
require(feature != ResultFeature.transformedValue || (expr.isDefined || segmentId.isDefined),
"For the `transformedValue` result feature, OutputField must contain an EXPRESSION, unless it is used to refer to a " +
"transformed value of a segment model through the segmentID attribute.")
override def fieldType: FieldType = FieldType.OutputField
def criterion: (Algorithm, RankBasis, RankOrder) = (algorithm, rankBasis, rankOrder)
override def toString = s"OutputField(name=$name, displayName=$displayName, dataType=$dataType, opType=$opType, feature=$feature, targetField=$targetField, value=$value, ruleFeature=$ruleFeature, algorithm=$algorithm, rank=$rank, rankBasis=$rankBasis, rankOrder=$rankOrder, isMultiValued=$isMultiValued, segmentId=$segmentId, isFinalResult=$isFinalResult, decisions=$decisions, expr=$expr)"
}
object OutputField {
def predictedValue(model: Model): OutputField = {
if (model.hasTarget) predictedValue(model.targetField) else {
new OutputField("predicted",
Some(s"Predicted value"),
if (model.isRegression) RealType else StringType,
if (model.isRegression) OpType.continuous else OpType.nominal)
}
}
def predictedValue(target: Field): OutputField = {
new OutputField(s"predicted_${target.name}",
Some(s"Predicted value of ${target.name}"),
if (target.dataType == IntegerType && OpType.isRegression(target.opType)) RealType else target.dataType,
target.opType)
}
def predictedValue(name: String, displayName: String, dataType: DataType, opType: OpType): OutputField = {
new OutputField(name,
Option(displayName),
dataType,
opType)
}
def predictedDisplayValue(name: String, displayName: String): OutputField = {
new OutputField(name,
Option(displayName),
StringType,
OpType.nominal,
ResultFeature.predictedDisplayValue)
}
def probability(value: DataVal = null): OutputField = {
if (value == null) {
new OutputField("probability",
Some("Probability of predicted value"),
RealType,
OpType.continuous,
ResultFeature.probability)
} else {
new OutputField(s"probability_$value",
Some(s"Probability of $value"),
RealType,
OpType.continuous,
ResultFeature.probability,
value = Option(value))
}
}
def confidence(): OutputField = {
new OutputField("confidence",
Some("Confidence of predicted value"),
RealType,
OpType.continuous,
ResultFeature.confidence)
}
def nodeId(): OutputField = {
entityId("node_id", "ID of hit node")
}
def entityId(name: String, displayName: String): OutputField = {
new OutputField(name,
Option(displayName),
StringType,
OpType.nominal,
ResultFeature.entityId)
}
def affinity(name: String, displayName: String): OutputField = {
new OutputField(name,
Option(displayName),
RealType,
OpType.continuous,
ResultFeature.affinity)
}
def reasonCode(rank: Int): OutputField = {
new OutputField(s"reason_code_${rank}",
Option(s"Reason code ${rank}"),
StringType,
OpType.nominal,
ResultFeature.reasonCode)
}
}
/**
* The Decisions element contains an element Decision for every possible value of the decision.
*/
class Decisions(
val decisions: Array[Decision],
val businessProblem: Option[String],
val description: Option[String]) extends PmmlElement
class Decision(
val value: String,
val displayValue: Option[String],
val description: Option[String]) extends PmmlElement
/**
* The Output section in the model specifies names for columns in an output table and describes how to compute the
* corresponding values.
*/
trait HasOutputFields {
def outputFields: Array[OutputField]
def finalOutputFields: Array[OutputField] = outputFields.filter(_.isFinalResult)
def containInterResults: Boolean = outputFields.exists(x => !x.isFinalResult)
}
/**
* Output element describes a set of result values that can be returned from a model.
*/
class Output(override val outputFields: Array[OutputField])
extends HasOutputFields with HasField with PmmlElement {
lazy val map: Map[String, OutputField] = outputFields.map(x => (x.name, x)).toMap
/**
* Returns the field of a given name, None if a field with the given name does not exist
*/
override def getField(name: String): Option[Field] = map.get(name)
}
trait HasOutput {
self: Model =>
/**
* User-defined custom output fields, both the internal output of PMML and predefined output are ignored when the
* field is specified.
*/
var customOutputFields: Array[OutputField] = Array.empty
/** A flag for whether to return those predefined output fields not exist in the output element explicitly. */
var supplementOutput: Boolean = false
def setSupplementOutput(value: Boolean): this.type = {
supplementOutput = value
this
}
def unionCandidateOutputFields: Array[OutputField] = output.map(x =>
combineOutputFields(x.outputFields, defaultOutputFields)).getOrElse(defaultOutputFields)
def unionOutputFields: Array[OutputField] = output.map(x =>
combineOutputFields(x.finalOutputFields, defaultOutputFields)).getOrElse(defaultOutputFields)
def output: Option[Output]
def candidateOutputFields: Array[OutputField] = {
if (customOutputFields != null && customOutputFields.length > 0)
customOutputFields
else
output.map(x => if (supplementOutput) unionCandidateOutputFields else x.outputFields).getOrElse(defaultOutputFields)
}
def outputFields: Array[OutputField] = {
if (customOutputFields != null && customOutputFields.length > 0)
customOutputFields
else
output.map(x => if (supplementOutput) unionOutputFields else x.finalOutputFields).getOrElse(defaultOutputFields)
}
def setOutputFields(outputFields: Array[OutputField]): this.type = {
customOutputFields = outputFields
this
}
def outputNames: Array[String] = outputFields.map(_.name)
def containInterResults: Boolean = output.map(_.containInterResults).getOrElse(false)
def outputIndex(feature: ResultFeature, value: Option[Any] = None): Int = {
val ofs = candidateOutputFields
var i = 0
while (i < ofs.length) {
if (ofs(i).feature == feature && (feature != ResultFeature.probability || ofs(i).value == value)) {
return i
}
i += 1
}
-1
}
lazy val predictedValueIndex: Int = outputIndex(ResultFeature.predictedValue)
def isPredictionOnly: Boolean = {
candidateOutputFields.length == 1 && candidateOutputFields(0).feature == ResultFeature.predictedValue
}
/** Returns targets that are residual values to be computed, the input data must include target values. */
def targetFieldsOfResidual = targetNamesOfResidual.map(x => field(x))
def targetNamesOfResidual = candidateOutputFields.filter(_.feature == ResultFeature.residual).
map(x => x.targetField.getOrElse(targetName)).toSet.toArray
def combineOutputFields(listA: Array[OutputField], listB: Array[OutputField]): Array[OutputField] = {
val result = mutable.ArrayBuilder.make[OutputField]
result.sizeHint(listA.size + listB.size)
result ++= listA
for(x <- listB) {
var i = 0
var exist = false
while (i < listA.length && !exist) {
val y = listA(i)
if (x.feature == y.feature && y.isFinalResult) {
exist = true
x.feature match {
case ResultFeature.predictedValue => {
if (multiTargets && x.targetField != y.targetField) {
exist = false
}
}
case ResultFeature.probability => {
if (x.value != y.value)
exist = false
}
case _ =>
}
}
i += 1
}
if (!exist) {
result += x
}
}
result.result()
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy