org.pmml4s.xml.Builder.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml4s_2.11 Show documentation
Show all versions of pmml4s_2.11 Show documentation
A PMML scoring library in Scala
The newest version!
/*
* Copyright (c) 2017-2023 AutoDeployAI
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.pmml4s.xml
import org.pmml4s._
import org.pmml4s.common._
import org.pmml4s.data.DataVal
import org.pmml4s.metadata._
import org.pmml4s.model.Model
import org.pmml4s.transformations.{BuiltInFunctions, Expression, LocalTransformations}
import org.pmml4s.util.{ArrayUtils, StringUtils, Utils}
import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer
/**
* Base class of model builder
*/
trait Builder[T <: Model] extends TransformationsBuilder {
protected var parent: Model = _
protected val extensions = new ArrayBuffer[Extension]
protected var miningSchema: MiningSchema = _
protected var output: Option[Output] = None
protected var targets: Option[Targets] = None
protected var localTransformations: Option[LocalTransformations] = None
protected var modelStats: Option[ModelStats] = None
protected var modelExplanation: Option[ModelExplanation] = None
protected var modelVerification: Option[ModelVerification] = None
protected lazy val wrappedFields: ArrayBuffer[WrappedField] = ArrayBuffer.empty
protected def attributes: ModelAttributes
protected def defaultFieldScope: FieldScope = this
/**
* OutputField with feature="transformedValue" in a PMML model can refer to some field after it
*/
protected val outputFieldScope: MutableFieldScope[OutputField] = new MutableFieldScope[OutputField] {
override def getField(name: String): Option[Field] = {
super.getField(name) orElse {
val wf = new WrappedField(name)
wrappedFields += wf
Some(wf)
}
}
}
/** Builds a PMML model from a specified XML reader. */
def build(reader: XMLEventReader, attrs: XmlAttrs, parent: Model): T
/** Name of the builder. */
def name: String
def postBuild(): Unit = {
wrappedFields.dropWhile(x => {
val f = getField(x.name)
if (f.isDefined) {
x.field = f.get
true
} else false
})
}
def traverseModel(reader: XMLEventReader, parent: String, f: PartialFunction[XMLEvent, Any]): Any = {
var done = false
while (!done && reader.hasNext) {
reader.next() match {
case EvElemStart(_, ElemTags.EXTENSION, attrs, _) => extHandler(reader, attrs).foreach { x =>
extensions += x
}
case EvElemStart(_, ElemTags.MINING_SCHEMA, _, _) => miningSchema = makeMiningSchema(reader)
case EvElemStart(_, ElemTags.OUTPUT, _, _) => output = makeOutput(reader)
case EvElemStart(_, ElemTags.MODEL_STATS, _, _) => modelStats = makeModelStats(reader)
case EvElemStart(_, ElemTags.MODEL_EXPLANATION, _, _) => modelExplanation = makeModelExplanation(reader)
case EvElemStart(_, ElemTags.TARGETS, _, _) => targets = makeTargets(reader)
case EvElemStart(_, ElemTags.LOCAL_TRANSFORMATIONS, _, _) =>
localTransformations = Option(makeLocalTransformations(reader))
case EvElemStart(_, ElemTags.MODEL_VERIFICATION, attrs, _) =>
modelVerification = makeModelVerification(reader, attrs)
case event: EvElemStart => f(event)
case EvElemEnd(_, `parent`) => done = true
case _ =>
}
}
}
override def getField(name: String): Option[Field] = {
val result: Option[Field] = if (parent != null) parent.getField(name) else None
result orElse localTransformations.flatMap(_.get(name)) orElse derivedFieldScope.getField(name)
}
def target: Field = {
val name = targets.map(_.targetName).getOrElse(miningSchema.targetName)
if (name != null) field(name) else null
}
def getTarget: Option[Field] = {
val name = targets.map(_.targetName).getOrElse(miningSchema.targetName)
if (name != null) getField(name) else None
}
def verifyScore(s: String): DataVal = {
val input = DataVal.from(s)
if (attributes.isClassification) {
// Check its parent target that may be different from anonymous target of the child model.
val t = getTarget
t.map(x => verifyValue(s, x)).getOrElse({
// Check the parent target carefully
var result: DataVal = input
if (parent != null && parent.targetField != null && parent.targetField.isCategorical) {
val transformedValue = parent.targetField.toVal(s)
if (parent.targetField.isValidValue(transformedValue)) {
result = transformedValue
}
}
result
})
} else if (attributes.isRegression) {
toDataVal(s, RealType)
} else input
}
override def getFunction(name: String): Option[transformations.Function] = {
BuiltInFunctions.getFunction(name) orElse parent.transformationDictionary.flatMap(_.getFunction(name)) orElse
super.getFunction(name)
}
/** Extracts these common attributes from a model */
protected def makeAttributes(attrs: XmlAttrs): ModelAttributes = new ModelAttributes(
MiningFunction.withName(attrs(AttrTags.FUNCTION_NAME)),
attrs.get(AttrTags.MODEL_NAME),
attrs.get(AttrTags.ALGORITHM_NAME),
attrs.getBoolean(AttrTags.IS_SCORABLE, true))
/** Parses the mining fields under MiningSchema */
protected def makeMiningSchema(reader: XMLEventReader): MiningSchema = {
val miningFields = makeElems(reader, ElemTags.MINING_SCHEMA, ElemTags.MINING_FIELD, new ElemBuilder[MiningField] {
def build(reader: XMLEventReader, attrs: XmlAttrs): MiningField = {
val name = attrs(AttrTags.NAME)
val f = field(name)
val usageType = attrs.get(AttrTags.USAGE_TYPE).map { x => UsageType.withName(x) } getOrElse UsageType.active
val opType = attrs.get(AttrTags.OPTYPE).map { x => OpType.withName(x) }
val importance = attrs.getDouble(AttrTags.IMPORTANCE)
val outliers = attrs.get(AttrTags.OUTLIERS).map { x => OutlierTreatmentMethod.withName(x) } getOrElse
OutlierTreatmentMethod.asIs
val (lowValue, highValue) = attrs.getDouble(AttrTags.LOW_VALUE, AttrTags.HIGH_VALUE)
val missingValueReplacement = attrs.get(AttrTags.MISSING_VALUE_REPLACEMENT).flatMap { x => f.toValOption(x) }
val missingValueTreatment = attrs.get(AttrTags.MISSING_VALUE_TREATMENT).map { x =>
MissingValueTreatment
.withName(x)
}
val invalidValueTreatment = attrs.get(AttrTags.INVALID_VALUE_TREATMENT).map { x =>
InvalidValueTreatment
.withName(x)
} getOrElse {
if (parent != null && parent.miningSchema != null && parent.miningSchema.contains(name))
parent.miningSchema(name).invalidValueTreatment else InvalidValueTreatment.returnInvalid
}
val invalidValueReplacement = attrs.get(AttrTags.INVALID_VALUE_REPLACEMENT).flatMap { x => f.toValOption(x) } orElse {
if (parent != null && parent.miningSchema != null && parent.miningSchema.contains(name)) {
parent.miningSchema(name).invalidValueReplacement
} else None
}
new MiningField(name, usageType, opType, importance, outliers, lowValue, highValue, missingValueReplacement,
missingValueTreatment, invalidValueTreatment, invalidValueReplacement)
}
})
new MiningSchema(miningFields)
}
import ResultFeature._
def inferDataType(feature: ResultFeature, targetField: Option[String]): DataType = feature match {
case `predictedValue` => {
val t = targetField.map(field(_)).orElse(getTarget)
t.map(x => x.dataType match {
case IntegerType => RealType
case _ => x.dataType
}).getOrElse(StringType)
}
case `probability` | `affinity` | `standardError` | `clusterAffinity` | `entityAffinity` | `confidence` => RealType
case `predictedDisplayValue` | `clusterId` | `entityId` =>
StringType
case _ =>
UnresolvedDataType
}
/** Parses the output fields */
protected def makeOutput(reader: XMLEventReader): Option[Output] = {
val outputFields = makeElems(reader, ElemTags.OUTPUT, ElemTags.OUTPUT_FIELD, new ElemBuilder[OutputField] {
def build(reader: XMLEventReader, attrs: XmlAttrs): OutputField = {
val name = attrs(AttrTags.NAME)
val displayName = attrs.get(AttrTags.DISPLAY_NAME)
val opType = attrs.get(AttrTags.OPTYPE).map(OpType.withName(_)).getOrElse(OpType.typeless)
val feature = attrs.get(AttrTags.FEATURE).map(ResultFeature.withName(_)).getOrElse(ResultFeature.predictedValue)
val targetField = attrs.get(AttrTags.TARGET_FIELD)
val isFinalResult = attrs.getBoolean(AttrTags.IS_FINAL_RESULT, true)
val value = attrs.get(AttrTags.VALUE).map(x => if (feature == ResultFeature.probability) {
var t = targetField.flatMap(getField).getOrElse(target)
if (t == null && parent != null && parent.targetField != null && parent.targetField.isCategorical) {
t = parent.targetField
}
if (t != null) t.toVal(x) else DataVal.from(x)
} else DataVal.from(x))
val ruleFeature = attrs.get(AttrTags.RULE_FEATURE) map { x => RuleFeature.withName(x) } getOrElse RuleFeature
.consequent
val algorithm = attrs.get(AttrTags.ALGORITHM) map { x => Algorithm.withName(x) } getOrElse Algorithm
.exclusiveRecommendation
val rank = attrs.getInt(AttrTags.RANK, 1)
val rankBasis = attrs.get(AttrTags.RANK_BASIS) map { x => RankBasis.withName(x) } getOrElse RankBasis.confidence
val rankOrder = attrs.get(AttrTags.RANK_ORDER) map { x => RankOrder.withName(x) } getOrElse RankOrder.descending
val isMultiValued = Utils.toBoolean(attrs.getInt(AttrTags.IS_MULTI_VALUED, 0))
val segmentId = attrs.get(AttrTags.SEGMENT_ID)
// dataType is required from 4.3
val dataType = attrs.get(AttrTags.DATA_TYPE) map { x => DataType.withName(x) } getOrElse
inferDataType(feature, targetField)
var expr: Expression = null
var decisions: Decisions = null
traverseElems(reader, ElemTags.OUTPUT_FIELD, {
case EvElemStart(_, ElemTags.DECISIONS, attrs, _) => decisions = makeElem(reader, attrs, new
ElemBuilder[Decisions] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): Decisions = {
val (businessProblem, description) = attrs.get(AttrTags.BUSINESS_PROBLEM, AttrTags.DESCRIPTION)
val decisions = makeElems(reader, ElemTags.DECISIONS, ElemTags.DECISION, new ElemBuilder[Decision] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): Decision = {
val value = attrs(AttrTags.VALUE)
val (displayValue, description) = attrs.get(AttrTags.DISPLAY_VALUE, AttrTags.DESCRIPTION)
new Decision(value, displayValue, description)
}
})
new Decisions(decisions, businessProblem, description)
}
})
case ev: EvElemStart if (Expression.contains(ev.label)) => expr = makeExpression(reader, ev, outputFieldScope)
case _ =>
})
outputFieldScope += new OutputField(name, displayName, dataType, opType, feature, targetField, value,
ruleFeature, algorithm, rank,
rankBasis, rankOrder, isMultiValued, segmentId, isFinalResult, Option(decisions), Option(expr))
}
})
Some(new Output(outputFields))
}
/** Parses the targets */
protected def makeTargets(reader: XMLEventReader): Option[Targets] = {
val targets = makeElems(reader, ElemTags.TARGETS, ElemTags.TARGET, new ElemBuilder[Target] {
def build(reader: XMLEventReader, attrs: XmlAttrs): Target = {
val field = attrs.get(AttrTags.FIELD)
val optype = attrs.get(AttrTags.OPTYPE) map { x => OpType.withName(x) }
val castInteger = attrs.get(AttrTags.CAST_INTEGER) map { x => CastInteger.withName(x) }
val (min, max) = attrs.getDouble(AttrTags.MIN, AttrTags.MAX)
val rescaleConstant = attrs.getDouble(AttrTags.RESCALE_CONSTANT, 0.0)
val rescaleFactor = attrs.getDouble(AttrTags.RESCALE_FACTOR, 1.0)
val targetValues = makeElems(reader, ElemTags.TARGET, ElemTags.TARGET_VALUE, new ElemBuilder[TargetValue] {
def build(reader: XMLEventReader, attrs: XmlAttrs): TargetValue = {
val value = attrs.get(AttrTags.VALUE).map(DataVal.from)
val displayValue = attrs.get(AttrTags.DISPLAY_VALUE)
val priorProbability = attrs.getDouble(AttrTags.PRIOR_PROBABILITY)
val defaultValue = attrs.getDouble(AttrTags.DEFAULT_VALUE)
new TargetValue(value, displayValue, priorProbability, defaultValue)
}
})
new Target(field, optype, castInteger, min, max, rescaleConstant, rescaleFactor, targetValues)
}
})
Some(new Targets(targets))
}
protected def makeScoreDistribution(reader: XMLEventReader, attrs: XmlAttrs): ScoreDistribution =
makeElem(reader, attrs, new ElemBuilder[ScoreDistribution] {
def build(reader: XMLEventReader, attrs: XmlAttrs): ScoreDistribution = {
val value = verifyScore(attrs(AttrTags.VALUE))
val recordCount = attrs.double(AttrTags.RECORD_COUNT)
val confidence = attrs.getDouble(AttrTags.CONFIDENCE)
val probability = attrs.getDouble(AttrTags.PROBABILITY)
new ScoreDistribution(value, recordCount, confidence, probability)
}
})
/** Parses one of predicates: SimplePredicate, CompoundPredicate, SimpleSetPredicate, True, or False */
protected def makePredicate(reader: XMLEventReader, event: EvElemStart): Predicate =
makeElem(reader, event, new GroupElemBuilder[Predicate] {
def build(reader: XMLEventReader, event: EvElemStart): Predicate = event match {
case EvElemStart(_, ElemTags.SIMPLE_PREDICATE, attrs, _) => makeElem(reader, attrs, new
ElemBuilder[SimplePredicate] {
def build(reader: XMLEventReader, attrs: XmlAttrs): SimplePredicate = {
val f = field(attrs(AttrTags.FIELD))
val operator = Operator.withName(attrs(AttrTags.OPERATOR))
val value = if (operator != Operator.isMissing && operator != Operator.isNotMissing) {
// Besides of the continuous values, the real numeric values of categorical fields are treated as
// normal values, not need to encode them
if (f.isContinuous || f.isReal) {
// Not validate the value
Utils.toDouble(attrs(AttrTags.VALUE))
} else {
f.encode(f.toVal(attrs(AttrTags.VALUE)))
}
} else Double.NaN
new SimplePredicate(f, operator, value)
}
})
case EvElemStart(_, ElemTags.COMPOUND_PREDICATE, attrs, _) => makeElem(reader, attrs, new
ElemBuilder[CompoundPredicate] {
def build(reader: XMLEventReader, attrs: XmlAttrs): CompoundPredicate = {
val booleanOperator = CompoundPredicate.BooleanOperator.withName(attrs(AttrTags.BOOLEAN_OPERATOR))
val children: Array[Predicate] = makeElems(reader, ElemTags.COMPOUND_PREDICATE, Predicate.values, new
GroupElemBuilder[Predicate] {
def build(reader: XMLEventReader, event: EvElemStart): Predicate = makePredicate(reader, event)
})
new CompoundPredicate(booleanOperator, children)
}
})
case EvElemStart(_, ElemTags.SIMPLE_SET_PREDICATE, attrs, _) => makeElem(reader, attrs, new
ElemBuilder[SimpleSetPredicate] {
def build(reader: XMLEventReader, attrs: XmlAttrs): SimpleSetPredicate = {
val f = field(attrs(AttrTags.FIELD))
val booleanOperator = SimpleSetPredicate.BooleanOperator.withName(attrs(AttrTags.BOOLEAN_OPERATOR))
val array = makeElem(reader, ElemTags.SIMPLE_SET_PREDICATE, ElemTags.ARRAY,
new ElemBuilder[Array[_]] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): Array[_] =
makeArray(reader, attrs)
})
val values = array.get.map(x => f.encode(Utils.toDataVal(x, f.dataType))).toSet
new SimpleSetPredicate(f, booleanOperator, values)
}
})
case EvElemStart(_, ElemTags.TRUE, _, _) => True
case EvElemStart(_, ElemTags.FALSE, _, _) => False
case _ => ??????
}
})
protected def makeContinuousDistribution(reader: XMLEventReader, event: EvElemStart): ContinuousDistribution =
makeElem(reader, event, new GroupElemBuilder[ContinuousDistribution] {
override def build(reader: XMLEventReader, event: EvElemStart): ContinuousDistribution = event match {
case EvElemStart(_, ElemTags.ANY_DISTRIBUTION, attrs, _) => makeElem(reader, attrs, new
ElemBuilder[AnyDistribution] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): AnyDistribution = {
val mean = attrs.double(AttrTags.MEAN)
val variance = attrs.double(AttrTags.VARIANCE)
new AnyDistribution(mean, variance)
}
})
case EvElemStart(_, ElemTags.GAUSSIAN_DISTRIBUTION, attrs, _) => makeElem(reader, attrs, new
ElemBuilder[GaussianDistribution] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): GaussianDistribution = {
val mean = attrs.double(AttrTags.MEAN)
val variance = attrs.double(AttrTags.VARIANCE)
new GaussianDistribution(mean, variance)
}
})
case EvElemStart(_, ElemTags.POISSON_DISTRIBUTION, attrs, _) => makeElem(reader, attrs, new
ElemBuilder[PoissonDistribution] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): PoissonDistribution = {
val mean = attrs.double(AttrTags.MEAN)
new PoissonDistribution(mean)
}
})
case EvElemStart(_, ElemTags.UNIFORM_DISTRIBUTION, attrs, _) => makeElem(reader, attrs, new
ElemBuilder[UniformDistribution] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): UniformDistribution = {
val lower = attrs.double(AttrTags.LOWER)
val upper = attrs.double(AttrTags.UPPER)
new UniformDistribution(lower, upper)
}
})
case _ => ??????
}
})
def makeArray(reader: XMLEventReader, attrs: XmlAttrs): Array[_] = {
val arrayType = ArrayType.withName(attrs(AttrTags.TYPE))
val n = attrs.getInt(AttrTags.N)
val text = extractText(reader, ElemTags.ARRAY)
val a = extractArray(text)
n.foreach(x => if (x != a.size) throw new SemanticErrorException(s"The length of array must be $x, got ${a.size}"))
import ArrayType._
arrayType match {
case `int` => {
val result = new Array[Long](a.size)
for (i <- 0 until a.size) {
result(i) = a(i).toLong
}
result
}
case `real` => {
val result = new Array[Double](a.size)
for (i <- 0 until a.size) {
result(i) = StringUtils.asDouble(a(i))
}
result
}
case `string` => {
a
}
}
}
def makeRealArray(reader: XMLEventReader, attrs: XmlAttrs): Array[Double] = {
val res = makeArray(reader, attrs)
res.array.asInstanceOf[Array[Double]]
}
def makeIntArray(reader: XMLEventReader, attrs: XmlAttrs): Array[Int] = {
val res = makeArray(reader, attrs)
res.array.asInstanceOf[Array[Int]]
}
def makeStringArray(reader: XMLEventReader, attrs: XmlAttrs): Array[String] = {
val res = makeArray(reader, attrs)
res.array.asInstanceOf[Array[String]]
}
def makeRealSparseArray(reader: XMLEventReader, attrs: XmlAttrs): SparseVector[Double] = {
val n = attrs.getInt(AttrTags.N)
val defaultValue = attrs.getDouble(AttrTags.DEFAULT_VALUE, 0.0)
val (indices, entries) = makeElem(reader, ElemTags.REAL_SPARSE_ARRAY, ElemTags.INDICES, new
ElemBuilder[Array[Int]] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): Array[Int] = {
val text = extractText(reader, ElemTags.INDICES)
ArrayUtils.toInt(extractArray(text))
}
}, ElemTags.REAL_ENTRIES, new ElemBuilder[Array[Double]] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): Array[Double] = {
val text = extractText(reader, ElemTags.REAL_ENTRIES)
ArrayUtils.toDouble(extractArray(text))
}
})
if (indices.isDefined && entries.isDefined) {
if (indices.get.length != entries.get.length) {
throw new PmmlException("Both arrays, Indices and INT-Entries or REAL-Entries, must have the same length")
} else {
val len = n.getOrElse(indices.get.last)
new SparseVector[Double](len, indices.get.map(_ - 1), entries.get, defaultValue)
}
} else {
new SparseVector[Double](n.get, Array.emptyIntArray, Array.emptyDoubleArray, defaultValue)
}
}
def makeIntSparseArray(reader: XMLEventReader, attrs: XmlAttrs): SparseVector[Int] = {
val n = attrs.getInt(AttrTags.N)
val defaultValue = attrs.getInt(AttrTags.DEFAULT_VALUE, 0)
val (indices, entries) = makeElem(reader, ElemTags.REAL_SPARSE_ARRAY, ElemTags.INDICES, new
ElemBuilder[Array[Int]] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): Array[Int] = {
val text = extractText(reader, ElemTags.INDICES)
ArrayUtils.toInt(extractArray(text))
}
}, ElemTags.INT_ENTRIES, new ElemBuilder[Array[Int]] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): Array[Int] = {
val text = extractText(reader, ElemTags.INT_ENTRIES)
ArrayUtils.toInt(extractArray(text))
}
})
if (indices.isDefined && entries.isDefined) {
if (indices.get.length != entries.get.length) {
throw new PmmlException("Both arrays, Indices and INT-Entries or REAL-Entries, must have the same length")
} else {
val len = n.getOrElse(indices.get.last)
new SparseVector[Int](len, indices.get.map(_ - 1), entries.get, defaultValue)
}
} else {
new SparseVector[Int](n.get, Array.emptyIntArray, Array.emptyIntArray, defaultValue)
}
}
def makeMatrix(reader: XMLEventReader, attrs: XmlAttrs): Matrix = {
val kind = attrs.get(AttrTags.KIND).map(MatrixKind.withName).getOrElse(MatrixKind.any)
val nbRows = attrs.getInt(AttrTags.NB_ROWS)
val nbCols = attrs.getInt(AttrTags.NB_COLS)
val diagDefault = attrs.getDouble(AttrTags.DIAG_DEFAULT)
val offDiagDefault = attrs.getDouble(AttrTags.OFF_DIAG_DEFAULT)
val arrays = mutable.ArrayBuilder.make[Array[Double]]
nbRows.foreach(arrays.sizeHint)
val matCells = mutable.ArrayBuilder.make[MatCell]
traverseElems(reader, ElemTags.MATRIX, {
case EvElemStart(_, ElemTags.ARRAY, attrs, _) => arrays += makeRealArray(reader, attrs)
case EvElemStart(_, ElemTags.MAT_CELL, attrs, _) => matCells += makeElem(reader, attrs, new ElemBuilder[MatCell] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): MatCell = {
val row = attrs.int(AttrTags.ROW)
val col = attrs.int(AttrTags.COL)
val value = StringUtils.asDouble(extractText(reader, ElemTags.MAT_CELL))
new MatCell(row, col, value)
}
})
})
val as = arrays.result()
import MatrixKind._
kind match {
case `diagonal` => new DiagonalMatrix(as(0), offDiagDefault)
case `symmetric` => new SymmetricMatrix(as)
case `any` => {
if (as.length > 0) {
new DenseMatrix(as)
} else {
val cells = matCells.result()
SparseMatrix.fromCells(nbRows.getOrElse(cells.maxBy(_.row).row),
nbCols.getOrElse(cells.maxBy(_.col).col),
cells,
diagDefault,
offDiagDefault)
}
}
}
}
protected def makeModelStats(reader: XMLEventReader): Option[ModelStats] = {
skipLabel(reader)
// TODO: ModelStats
None
}
protected def makeModelExplanation(reader: XMLEventReader): Option[ModelExplanation] = {
skipLabel(reader)
// TODO: ModelExplanation
None
}
protected def makeModelVerification(reader: XMLEventReader, attrs: XmlAttrs): Option[ModelVerification] = {
skipLabel(reader)
// TODO: ModelVerification
None
}
protected def extractArray(text: String): Array[String] = {
if (text == null || text.isEmpty) {
return ArrayUtils.emptyStringArray
}
val a = mutable.ArrayBuilder.make[String]
var (begin, end) = (-1, -1)
var i = 0
while (i < text.length) {
val c = text(i)
if (c == '\n') {
i += 1
} else if (c == '\\' && i < text.length - 1 && text(i + 1) == '"') {
i += 2
} else {
if (c == '"') {
begin = i + 1
end = begin
var j = end
while (j < text.length && (text(j) != '"' || text(j - 1) == '\\')) {
j += 1
}
end = j
i = j + 1
} else {
if (c == ' ' || c == '\t') {
if (begin >= 0) {
end = i
}
} else {
if (begin < 0) {
begin = i
}
if (i == text.length - 1) {
end = text.length
}
}
}
if (begin >= 0 && end >= 0) {
a += text.substring(begin, end)
begin = -1
end = -1
}
i += 1
}
}
a.result()
}
def makePartition(reader: XMLEventReader, attrs: XmlAttrs): Partition = {
skipLabel(reader)
// TODO: Partition
null
}
def makeComparisonMeasure(reader: XMLEventReader, attrs: XmlAttrs): ComparisonMeasure = makeElem(reader, attrs,
new ElemBuilder[ComparisonMeasure] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): ComparisonMeasure = {
val kind = ComparisonMeasureKind.withName(attrs(AttrTags.KIND))
val compareFunction =
attrs.get(AttrTags.COMPARE_FUNCTION).map(CompareFunction.withName).getOrElse(CompareFunction.absDiff)
val minimum = attrs.getDouble(AttrTags.MINIMUM)
val maximum = attrs.getDouble(AttrTags.MAXIMUM)
var distance: Distance = null
traverseElems(reader, ElemTags.COMPARISON_MEASURE, {
case event: EvElemStart if (Distance.contains(event.label)) => distance = makeElem(reader, event, new
GroupElemBuilder[Distance] {
override def build(reader: XMLEventReader, event: EvElemStart): Distance = event match {
case EvElemStart(_, ElemTags.EUCLIDEAN, _, _) => euclidean
case EvElemStart(_, ElemTags.SQUARED_EUCLIDEAN, _, _) => squaredEuclidean
case EvElemStart(_, ElemTags.CHEBYCHEV, _, _) => chebychev
case EvElemStart(_, ElemTags.CITY_BLOCK, _, _) => cityBlock
case EvElemStart(_, ElemTags.MINKOWSKI, attrs, _) => makeElem(reader, attrs, new
ElemBuilder[Distance] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): Distance = new minkowski(attrs.double
(AttrTags.P_PARAMETER))
})
case EvElemStart(_, ElemTags.SIMPLE_MATCHING, _, _) => simpleMatching
case EvElemStart(_, ElemTags.JACCARD, _, _) => jaccard
case EvElemStart(_, ElemTags.TANIMOTO, _, _) => tanimoto
case EvElemStart(_, ElemTags.BINARY_SIMILARITY, attrs, _) => makeElem(reader, attrs, new
ElemBuilder[Distance] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): Distance = {
new binarySimilarity(attrs.double(AttrTags.C00_PARAMETER),
attrs.double(AttrTags.C01_PARAMETER),
attrs.double(AttrTags.C10_PARAMETER),
attrs.double(AttrTags.C11_PARAMETER),
attrs.double(AttrTags.D00_PARAMETER),
attrs.double(AttrTags.D01_PARAMETER),
attrs.double(AttrTags.D10_PARAMETER),
attrs.double(AttrTags.D11_PARAMETER))
}
})
case _ => ??????
}
})
})
new ComparisonMeasure(kind, distance, compareFunction, minimum, maximum)
}
})
}
object Builder {
val builders: mutable.Map[String, Class[_ <: Builder[_ <: Model]]] = mutable.Map.empty
def register(name: String, cls: Class[_ <: Builder[_ <: Model]]): Class[_ <: Builder[_ <: Model]] = {
builders.put(name, cls).getOrElse(cls)
}
def unregister(name: String) = {
builders.remove(name)
}
def get(name: String): Option[Builder[_ <: Model]] = builders.get(name).map {
x => x.getDeclaredConstructor().newInstance().asInstanceOf[Builder[_ <: Model]]
}
// register all candidate model builders
register(ElemTags.TREE_MODEL, classOf[TreeBuilder])
register(ElemTags.REGRESSION_MODEL, classOf[RegressionBuilder])
register(ElemTags.MINING_MODEL, classOf[MiningBuilder])
register(ElemTags.NEURAL_NETWORK, classOf[NeuralNetworkBuilder])
register(ElemTags.NAIVE_BAYES_MODEL, classOf[NaiveBayesBuilder])
register(ElemTags.SUPPORT_VECTOR_MACHINE_MODEL, classOf[SupportVectorMachineBuilder])
register(ElemTags.CLUSTERING_MODEL, classOf[ClusteringBuilder])
register(ElemTags.GENERAL_REGRESSION_MODEL, classOf[GeneralRegressionBuilder])
register(ElemTags.ASSOCIATION_MODEL, classOf[AssociationBuilder])
register(ElemTags.RULE_SET_MODEL, classOf[RuleSetBuilder])
register(ElemTags.NEAREST_NEIGHBOR_MODEL, classOf[NearestNeighborBuilder])
register(ElemTags.SCORECARD, classOf[ScorecardBuilder])
register(ElemTags.ANOMALY_DETECTION_MODEL, classOf[AnomalyDetectionBuilder])
}
trait ElemBuilder[T] {
def build(reader: XMLEventReader, attrs: XmlAttrs): T
}
trait GroupElemBuilder[T] {
def build(reader: XMLEventReader, event: EvElemStart): T
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy