org.pmml4s.xml.MiningBuilder.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml4s_2.11 Show documentation
Show all versions of pmml4s_2.11 Show documentation
A PMML scoring library in Scala
The newest version!
/*
* Copyright (c) 2017-2023 AutoDeployAI
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.pmml4s.xml
import org.pmml4s.NotSupportedException
import org.pmml4s.common.{ModelAttributes, Predicate}
import org.pmml4s.metadata.Field
import org.pmml4s.model.MultipleModelMethod.MultipleModelMethod
import org.pmml4s.model._
import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer
/**
* Builder of Mining Model
*/
class MiningBuilder extends Builder[MiningModel] {
protected var attributes: ModelAttributes = _
private val embeddedModels = mutable.ArrayBuilder.make[EmbeddedModel]
private var segmentation: Segmentation = _
private var miningModel: MutableMiningModel = _
/** Builds a Mining model from a specified XML reader, which points the element */
override def build(reader: XMLEventReader, attrs: XmlAttrs, parent: Model): MiningModel = {
this.parent = parent
this.attributes = makeAttributes(attrs)
this.miningModel = new MutableMiningModel(parent)
traverseModel(reader, ElemTags.MINING_MODEL, {
case event: EvElemStart => {
miningModel.localTransformations = localTransformations
miningModel.miningSchema = miningSchema
event match {
case EvElemStart(_, ElemTags.REGRESSION, attrs, _) => embeddedModels += ???
case EvElemStart(_, ElemTags.DECISION_TREE, attrs, _) => embeddedModels += ???
case EvElemStart(_, ElemTags.SEGMENTATION, attrs, _) => {
segmentation = makeSegmentation(reader, attrs)
}
case _ =>
}
}
})
new MiningModel(parent, attributes, miningSchema,
embeddedModels.result(), Option(segmentation),
output, targets, localTransformations, modelStats, modelExplanation, modelVerification, extensions.toIndexedSeq)
}
override def postBuild(): Unit = {
super.postBuild()
if (wrappedFields.nonEmpty && segmentation != null) {
var i = -1
val idToModel = segmentation.segments.map(x => {
i += 1
(x.id.getOrElse(i.toString), x.model)
}).toMap
output.foreach(x => {
x.outputFields.foreach(of => {
if (of.segmentId.isDefined) {
val model = idToModel.get(of.segmentId.get)
model.foreach(y => {
wrappedFields.foreach(z => if (z.field == null) {
val f = y.output.flatMap(_.getField(z.name))
if (f.isDefined)
z.field = f.get
})
})
}
})
})
}
}
private def makeSegmentation(reader: XMLEventReader, attrs: XmlAttrs): Segmentation = makeElem(reader, attrs, new ElemBuilder[Segmentation] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): Segmentation = {
val multipleModelMethod = MultipleModelMethod.withName(attrs(AttrTags.MULTIPLE_MODEL_METHOD))
miningModel.multipleModelMethod = multipleModelMethod
val missingPredictionTreatment = attrs.get(AttrTags.MISSING_PREDICTION_TREATMENT).map(MissingPredictionTreatment.withName(_)).getOrElse(
MissingPredictionTreatment.continue
)
val missingThreshold = attrs.getDouble(AttrTags.MISSING_THRESHOLD, 1)
val segments = makeElems(reader, ElemTags.SEGMENTATION, ElemTags.SEGMENT, new ElemBuilder[Segment] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): Segment = {
val id = attrs.get(AttrTags.ID)
val weight = attrs.getDouble(AttrTags.WEIGHT, 1.0)
var predicate: Predicate = null
var model: Model = null
var variableWeight: VariableWeight = null
traverseElems(reader, ElemTags.SEGMENT, {
case event: EvElemStart if Predicate.contains(event.label) => predicate = makePredicate(reader, event)
case EvElemStart(_, label, attrs, _) if ModelBuilder.PMML_SUPPORTED_MODELS contains label => {
val builder = Builder.get(label).getOrElse(throw new NotSupportedException(label))
model = builder.build(reader, attrs, miningModel)
builder.postBuild()
}
case EvElemStart(_, ElemTags.VARIABLE_WEIGHT, attrs, _) => variableWeight = makeElem(reader, attrs, new ElemBuilder[VariableWeight] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): VariableWeight = {
val fld = getField(attrs(AttrTags.FIELD)) getOrElse model.output.map(_.field(attrs(AttrTags.FIELD))).get
new VariableWeight(fld)
}
})
case _ =>
})
val segment = new Segment(predicate, model, Option(variableWeight), id, weight)
miningModel += segment
segment
}
})
new Segmentation(multipleModelMethod, segments, missingPredictionTreatment, missingThreshold)
}
})
override def getField(name: String): Option[Field] = {
val result: Option[Field] = miningModel.getField(name)
result orElse super.getField(name)
}
/** Name of the builder. */
override def name: String = ElemTags.MINING_MODEL
}
class MutableMiningModel extends MutableModel {
def this(parent: Model) = {
this()
this.parent = parent
}
var multipleModelMethod: MultipleModelMethod = _
val segments = new ArrayBuffer[Segment]
def +=(segment: Segment): this.type = {
segments += segment
this
}
/** Returns the field of a given name, None if a field with the given name does not exist. */
override def getField(name: String): Option[Field] = {
if (multipleModelMethod != null && multipleModelMethod == MultipleModelMethod.modelChain) {
for (i <- (0 until segments.size).reverse) {
val f = segments(i).model.output.flatMap(_.getField(name))
if (f.isDefined)
return f
}
}
super.getField(name)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy