org.pmml4s.xml.RegressionBuilder.scala Maven / Gradle / Ivy
/*
* Copyright (c) 2017-2023 AutoDeployAI
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.pmml4s.xml
import org.pmml4s.common.{NumericPredictor, PredictorTerm, RegressionPredictor, RegressionTable}
import org.pmml4s.model._
import org.pmml4s.transformations.FieldRef
import scala.collection.mutable
/**
* Builder of Regression model.
*/
class RegressionBuilder extends Builder[RegressionModel] {
protected var attributes: RegressionAttributes = _
private val regressionTables = mutable.ArrayBuilder.make[RegressionTable]
/** Builds a Regression model from a specified XML reader, which points the element */
override def build(reader: XMLEventReader, attrs: XmlAttrs, parent: Model): RegressionModel = {
this.parent = parent
this.attributes = makeAttributes(attrs)
traverseModel(reader, ElemTags.REGRESSION_MODEL, {
case EvElemStart(_, ElemTags.REGRESSION_TABLE, attrs, _) => regressionTables += makeRegressionTable(reader, attrs)
})
new RegressionModel(parent, attributes, miningSchema, regressionTables.result(),
output, targets, localTransformations, modelStats, modelExplanation, modelVerification, extensions.toIndexedSeq)
}
private def makeRegressionTable(reader: XMLEventReader, attrs: XmlAttrs): RegressionTable = makeElem(reader, attrs, new ElemBuilder[RegressionTable] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): RegressionTable = {
val intercept = attrs.double(AttrTags.INTERCEPT)
val targetCategory = attrs.get(AttrTags.TARGET_CATEGORY).map(x => verifyValue(x, target))
val predictors = makeElems(reader, ElemTags.REGRESSION_TABLE, RegressionPredictor.values, new GroupElemBuilder[RegressionPredictor] {
def build(reader: XMLEventReader, event: EvElemStart): RegressionPredictor = makePredictor(reader, event)
})
new RegressionTable(predictors, intercept, targetCategory)
}
})
private def makePredictor(reader: XMLEventReader, event: EvElemStart): RegressionPredictor = makeElem(reader, event, new GroupElemBuilder[RegressionPredictor] {
def build(reader: XMLEventReader, event: EvElemStart): RegressionPredictor = event match {
case EvElemStart(_, ElemTags.NUMERIC_PREDICTOR, attrs, _) => makeElem(reader, attrs, new ElemBuilder[NumericPredictor] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): NumericPredictor = {
val name = attrs(AttrTags.NAME)
val exponent = attrs.getInt(AttrTags.EXPONENT, 1)
val coefficient = attrs.double(AttrTags.COEFFICIENT)
new NumericPredictor(field(name), coefficient, exponent)
}
})
case EvElemStart(_, ElemTags.CATEGORICAL_PREDICTOR, attrs, _) => makeCategoricalPredictor(reader, attrs)
case EvElemStart(_, ElemTags.PREDICTOR_TERM, attrs, _) => makeElem(reader, attrs, new ElemBuilder[RegressionPredictor] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): RegressionPredictor = {
val name = attrs.get(AttrTags.NAME)
val coefficient = attrs.double(AttrTags.COEFFICIENT)
val fields = makeElems(reader, ElemTags.PREDICTOR_TERM, ElemTags.FIELD_REF, new ElemBuilder[FieldRef] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): FieldRef = {
val f = field(attrs(AttrTags.FIELD))
val mapMissingTo = attrs.get(AttrTags.MAP_MISSING_TO).map(f.toVal)
new FieldRef(f, mapMissingTo)
}
})
new PredictorTerm(name, coefficient, fields)
}
})
case _ => ??????
}
})
override def makeAttributes(attrs: XmlAttrs): RegressionAttributes = {
val attributes = super.makeAttributes(attrs)
new RegressionAttributes(
functionName = attributes.functionName,
modelName = attributes.modelName,
algorithmName = attributes.algorithmName,
isScorable = attributes.isScorable,
modelType = attrs.get(AttrTags.MODEL_TYPE) map { x => RegressionModelType.withName(x) },
targetFieldName = attrs.get(AttrTags.TARGET_FIELD_NAME),
normalizationMethod = attrs.get(AttrTags.NORMALIZATION_METHOD) map { x => RegressionNormalizationMethod.withName(x) } getOrElse RegressionNormalizationMethod.none)
}
/** Name of the builder */
override def name: String = ElemTags.REGRESSION_MODEL
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy