org.pmml4s.metadata.Attribute.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml4s_2.12 Show documentation
Show all versions of pmml4s_2.12 Show documentation
A PMML scoring library in Scala
The newest version!
/*
* Copyright (c) 2017-2023 AutoDeployAI
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.pmml4s.metadata
import org.pmml4s.common._
import org.pmml4s.data.DataVal
import org.pmml4s.metadata.AttributeType.{Categorical, Continuous, Typeless}
import org.pmml4s.util.Utils
import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer
trait HasLabels {
def labels: Map[DataVal, String]
def getLabel(value: DataVal): Option[String] = labels.get(value)
}
trait HasMissingValues {
def missingValues: Set[DataVal]
@inline
def isMissingValue(value: DataVal): Boolean =
value == null || value.isMissing || missingValues.contains(value)
def isMissingValue(value: Any): Boolean = isMissingValue(DataVal.from(value))
}
trait HasInvalidValues {
def invalidValues: Set[DataVal]
def isInvalidValue(value: DataVal): Boolean = invalidValues.contains(value)
def isInvalidValue(value: Any): Boolean = isInvalidValue(DataVal.from(value))
}
trait HasValidValues {
self: Attribute =>
def validValues: Array[DataVal]
def isValidValue(value: DataVal): Boolean = !isMissingValue(value) && !isInvalidValue(value)
def isValidValue(value: Any): Boolean = isValidValue(DataVal.from(value))
def numCategories: Int = validValues.length
/**
* Tests whether this field is binary, that is categorical and it
* contains exactly two valid values.
*/
def isBinary: Boolean = false
}
trait ValueIndexer {
def encode(value: DataVal): Double
def encode(value: Any): Double = encode(DataVal.from(value))
def decode(index: Int): DataVal
}
trait MutableValueIndexer extends ValueIndexer
sealed trait AttributeType
object AttributeType {
/**
* Defines const variables could be used in Java.
* Use Object.XXX() instead of Object.xxx$.MODULE$
*/
val CONTINUOUS: Continuous.type = Continuous
val CATEGORICAL: Categorical.type = Categorical
val TYPELESS: Typeless.type = Typeless
case object Continuous extends AttributeType
case object Categorical extends AttributeType
case object Typeless extends AttributeType
}
trait Attribute extends HasLabels
with HasMissingValues
with HasInvalidValues
with HasValidValues
with HasIntervals
with ValueIndexer
with Serializable {
/** Attribute type. */
def attrType: AttributeType
def toAttribute: Attribute = this
def isMutable: Boolean = false
def valuesAsString: String = attrType match {
case Continuous => intervals.map(_.toString).mkString(",")
case Categorical => validValues.map(_.toString).mkString(if (isBinary) "/" else ",")
case Typeless => ""
}
// A single numeric field without any extra attributes defined.
def isPlain: Boolean = attrType == AttributeType.Continuous &&
missingValues.isEmpty &&
invalidValues.isEmpty &&
validValues.length == 0 &&
intervals.length == 0
}
object Attribute {
import org.pmml4s.common.OpType._
def apply(dataType: DataType, opType: OpType, intervals: Array[Interval], values: Array[Value]): Attribute = {
val (validVals, invalidVals, missingVals, labels) = Value.distinguish(values, dataType)
apply(opType, intervals, validVals, invalidVals, missingVals, labels)
}
def apply(opType: OpType,
intervals: Array[Interval],
validVals: Array[DataVal],
invalidVals: Set[DataVal],
missingVals: Set[DataVal],
labels: Map[DataVal, String]): Attribute = opType match {
case `nominal` => CategoricalAttribute(validVals, invalidVals, missingVals, labels)
case `ordinal` => CategoricalAttribute(validVals, invalidVals, missingVals, labels)
case `continuous` => ContinuousAttribute(intervals, validVals, invalidVals, missingVals, labels)
case `typeless` => TypelessAttribute
}
def apply(opType: OpType): Attribute = opType match {
case `nominal` => new MutableCategoricalAttribute
case `ordinal` => new MutableCategoricalAttribute
case `continuous` => new ContinuousAttribute
case `typeless` => TypelessAttribute
}
}
trait MutableAttribute extends Attribute with MutableValueIndexer {
override def isMutable: Boolean = true
}
class ContinuousAttribute(
override val intervals: Array[Interval] = Array.empty,
override val validValues: Array[DataVal] = Array.empty,
override val invalidValues: Set[DataVal] = Set.empty,
override val missingValues: Set[DataVal] = Set.empty,
override val labels: Map[DataVal, String] = Map.empty) extends Attribute with HasIntervals {
private val set: Set[DataVal] = validValues.toSet
def attrType: AttributeType = AttributeType.Continuous
override def isValidValue(value: DataVal): Boolean = if (validValues.length > 0) set.contains(value) else super.isValidValue(value)
override def isInvalidValue(value: DataVal): Boolean = super.isInvalidValue(value) || (!isMissingValue(value) && (if (validValues.length > 0) !set.contains(value) else !isIn(value)))
// We don't need to test if the specified value is invalid, because the invalid value has been handled by the preprocess operation.
// In the predicting phase, there are only both types: missing and valid.
def encode(value: DataVal): Double = if (!isMissingValue(value)) value.toDouble else Double.NaN
def decode(index: Int): DataVal = throw new UnsupportedOperationException("decode is not supported by the continuous field")
}
object ContinuousAttribute {
def apply(interval: Interval, missingVals: Set[DataVal]=Set.empty): ContinuousAttribute =
new ContinuousAttribute(Array(interval), missingValues=missingVals)
def apply(intervals: Array[Interval], values: Array[DataVal], invalidVals: Set[DataVal], missingVals: Set[DataVal], labels: Map[DataVal, String]) =
new ContinuousAttribute(intervals, values, invalidVals, missingVals, labels)
}
abstract class CategoricalAttribute(
override val invalidValues: Set[DataVal] = Set.empty,
override val missingValues: Set[DataVal] = Set.empty,
override val labels: Map[DataVal, String] = Map.empty) extends Attribute {
def attrType: AttributeType = AttributeType.Categorical
override def isBinary: Boolean = numCategories == 2
override def intervals: Array[Interval] = Array.empty
}
object CategoricalAttribute {
def apply(values: Array[DataVal], invalidVals: Set[DataVal], missingVals: Set[DataVal], labels: Map[DataVal, String]): CategoricalAttribute =
if (values.length == 0)
new MutableCategoricalAttribute(invalidVals, missingVals, labels)
else
new ImmutableCategoricalAttribute(values, invalidVals, missingVals, labels)
}
class ImmutableCategoricalAttribute(
override val validValues: Array[DataVal],
override val invalidValues: Set[DataVal] = Set.empty,
override val missingValues: Set[DataVal] = Set.empty,
override val labels: Map[DataVal, String] = Map.empty
) extends CategoricalAttribute() {
private val map: Map[DataVal, Double] = validValues.zipWithIndex.map(x => (x._1, x._2.toDouble)).toMap
override def isValidValue(value: DataVal): Boolean = {
if (map.nonEmpty)
!encode(value).isNaN
else
super.isValidValue(value)
}
override def isInvalidValue(value: DataVal): Boolean = {
super.isInvalidValue(value) || (!isMissingValue(value) && (map.nonEmpty && !map.contains(value)))
}
def encode(value: DataVal): Double = if (map.nonEmpty) {
map.getOrElse(value, Double.NaN)
} else {
if (isValidValue(value)) Utils.toDouble(value) else Double.NaN
}
def decode(index: Int): DataVal = if (map.nonEmpty) validValues(index) else
throw new UnsupportedOperationException("decode is not supported by the categorical field without values specified")
}
class MutableCategoricalAttribute(
override val invalidValues: Set[DataVal] = Set.empty,
override val missingValues: Set[DataVal] = Set.empty,
override val labels: Map[DataVal, String] = Map.empty) extends CategoricalAttribute(invalidValues, missingValues, labels) {
private val valsMapBuffer: mutable.Map[DataVal, Double] = new mutable.HashMap[DataVal, Double]
private val values: ArrayBuffer[DataVal] = new ArrayBuffer[DataVal]
override def encode(value: DataVal): Double = if (valsMapBuffer.contains(value)) valsMapBuffer(value) else {
if (isValidValue(value)) {
val index = validValues.length.toDouble
values += value
valsMapBuffer.put(value, index)
index
} else Double.NaN
}
def decode(index: Int): DataVal = if (values.nonEmpty) values(index) else
throw new UnsupportedOperationException("decode is not supported by the categorical field without values specified")
override def isMutable: Boolean = true
override def toAttribute: Attribute = this
override def validValues: Array[DataVal] = values.toArray
}
object TypelessAttribute extends Attribute {
override def validValues: Array[DataVal] = Array.empty[DataVal]
override def invalidValues: Set[DataVal] = Set.empty
override def missingValues: Set[DataVal] = Set.empty
override def intervals: Array[Interval] = Array.empty
override def labels: Map[DataVal, String] = Map.empty
def encode(value: DataVal): Double = Double.NaN
def decode(index: Int): DataVal = throw new UnsupportedOperationException("decode is not supported by the typeless field")
def attrType: AttributeType = AttributeType.Typeless
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy