org.pmml4s.model.NeuralNetwork.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml4s_2.12 Show documentation
Show all versions of pmml4s_2.12 Show documentation
A PMML scoring library in Scala
The newest version!
/*
* Copyright (c) 2017-2024 AutoDeployAI
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.pmml4s.model
import org.pmml4s.common.MiningFunction.MiningFunction
import org.pmml4s.common._
import org.pmml4s.data.{DataVal, Series}
import org.pmml4s.metadata.{MiningSchema, Output, Targets}
import org.pmml4s.model.ActivationFunction.ActivationFunction
import org.pmml4s.model.NNNormalizationMethod.NNNormalizationMethod
import org.pmml4s.transformations._
import org.pmml4s.util.Utils
import scala.collection.{immutable, mutable}
/**
* A neural network has one or more input nodes and one or more neurons. Some neurons' outputs are the output of the
* network. The network is defined by the neurons and their connections, aka weights. All neurons are organized into
* layers; the sequence of layers defines the order in which the activations are computed. All output activations for
* neurons in some layer L are evaluated before computation proceeds to the next layer L+1. Note that this allows for
* recurrent networks where outputs of neurons in layer L+i can be used as input in layer L where L+i > L. The model
* does not define a specific evaluation order for neurons within a layer.
*/
class NeuralNetwork(
var parent: Model,
override val attributes: NeuralNetworkAttributes,
override val miningSchema: MiningSchema,
val neuralInputs: NeuralInputs,
val neuralLayers: Array[NeuralLayer],
val neuralOutputs: NeuralOutputs,
override val output: Option[Output] = None,
override val targets: Option[Targets] = None,
override val localTransformations: Option[LocalTransformations] = None,
override val modelStats: Option[ModelStats] = None,
override val modelExplanation: Option[ModelExplanation] = None,
override val modelVerification: Option[ModelVerification] = None,
override val extensions: immutable.Seq[Extension] = immutable.Seq.empty)
extends Model with HasWrappedNeuralNetworkAttributes {
/** Model element type. */
override def modelElement: ModelElement = ModelElement.NeuralNetwork
/** Predicts values for a given data series. */
override def predict(values: Series): Series = {
val (series, returnInvalid) = prepare(values)
if (returnInvalid) {
return nullSeries
}
val transformedVals = new mutable.HashMap[String, Double]
var i = 0
while (i < neuralInputs.neuralInputs.length) {
val neuralInput = neuralInputs.neuralInputs(i)
val v = neuralInput.derivedField.eval(series)
// check if it's missing
if (Utils.isMissing(v)) {
return nullSeries
}
transformedVals.put(neuralInput.id, Utils.toDouble(v))
i += 1
}
i = 0
while (i < neuralLayers.length) {
val layer = neuralLayers(i)
val af = layer.activationFunction.getOrElse(activationFunction)
var j = 0
while (j < layer.neurons.length) {
val neuron = layer.neurons(j)
var z = 0.0
if (af == ActivationFunction.radialBasis) {
neuron.cons.foreach(x => {
val a = transformedVals(x.from) - x.weight
z += a * a
})
val w = neuron.width.getOrElse(layer.width.getOrElse(width.get))
z /= (2.0 * w * w)
val alt = neuron.altitude.getOrElse(layer.altitude.getOrElse(altitude))
val f = neuron.cons.length
val activation = Math.exp(f * Math.log(alt) - z)
transformedVals.put(neuron.id, activation)
}
else {
z = neuron.bias.getOrElse(0.0)
var k = 0
while (k < neuron.cons.length) {
val con = neuron.cons(k)
z += transformedVals(con.from) * con.weight
k += 1
}
val activation = af match {
case ActivationFunction.threshold => if (z > layer.threshold.getOrElse(threshold)) 1.0 else 0.0
case ActivationFunction.logistic => 1.0 / (1.0 + Math.exp(-z))
case ActivationFunction.tanh => Math.tanh(z)
case ActivationFunction.identity => z
case ActivationFunction.exponential => Math.exp(z)
case ActivationFunction.reciprocal => 1.0 / z
case ActivationFunction.square => z * z
case ActivationFunction.Gauss => Math.exp(-(z * z))
case ActivationFunction.sine => Math.sin(z)
case ActivationFunction.cosine => Math.cos(z)
case ActivationFunction.Elliott => z / (1.0 + Math.abs(z))
case ActivationFunction.arctan => 2.0 * Math.atan(z) / Math.PI
case ActivationFunction.rectifier => Math.max(0.0, z)
}
transformedVals.put(neuron.id, activation)
}
j += 1
}
import NNNormalizationMethod._
val nm = layer.normalizationMethod.getOrElse(normalizationMethod)
nm match {
case `simplemax` => {
val sum = layer.neurons.map(x => transformedVals(x.id)).sum
layer.neurons.foreach(x => transformedVals.put(x.id, transformedVals(x.id) / sum))
}
case `softmax` => {
val sum = layer.neurons.map(x => Math.exp(transformedVals(x.id))).sum
layer.neurons.foreach(x => transformedVals.put(x.id, Math.exp(transformedVals(x.id)) / sum))
}
case _ =>
}
i += 1
}
// NeuralNetwork allows multiple targets in a single PMML.
val outputs = new GenericMultiModelOutputs
i = 0
while (i < neuralOutputs.neuralOutputs.length) {
val neuralOutput = neuralOutputs.neuralOutputs(i)
val normalizedVal = transformedVals(neuralOutput.outputNeuron)
val f = neuralOutput.derivedField.getDataField
if (f.isDefined) {
val t = f.get
if (t.isContinuous) {
val regOutputs = outputs.getOrInsert[NeuralNetworkOutputs](t.name, createOutputs())
regOutputs.setPredictedValue(neuralOutput.derivedField.deeval(DataVal.from(normalizedVal)))
} else {
val cls = getClass(neuralOutput.derivedField.expr)
if (cls.isDefined) {
val clsOutputs = outputs.getOrInsert[NeuralNetworkOutputs](t.name, createOutputs())
clsOutputs.putProbability(cls.get, normalizedVal)
}
}
}
i += 1
}
outputs.toSeq.foreach(x => x._2 match {
case clsOutputs: NeuralNetworkOutputs => clsOutputs.evalPredictedValueByProbabilities(classes(x._1))
case _ =>
})
if (singleTarget) {
result(series, outputs.toSeq.head._2)
} else {
result(series, outputs)
}
}
/** Creates an object of NeuralNetworkOutputs that is for writing into an output series. */
override def createOutputs(): NeuralNetworkOutputs = new NeuralNetworkOutputs
private def getClass(expr: Expression): Option[DataVal] = expr match {
case nd: NormDiscrete => Some(nd.value)
case fr: FieldRef => if (fr.field.isDerivedField) {
getClass(fr.field.asInstanceOf[DerivedField].expr)
} else None
case _ => None
}
}
object ActivationFunction extends Enumeration {
type ActivationFunction = Value
val threshold, logistic, tanh, identity, exponential, reciprocal, square, Gauss, sine, cosine, Elliott, arctan, rectifier, radialBasis = Value
}
/**
* A normalization method softmax ( pj = exp(yj) / Sumi(exp(yi) ) ) or simplemax ( pj = yj / Sumi(yi) ) can be applied
* to the computed activation values. The attribute normalizationMethod is defined for the network with default value
* none ( pj = yj ), but can be specified for each layer as well. Softmax normalization is most often applied to the
* output layer of a classification network to get the probabilities of all answers. Simplemax normalization is often
* applied to the hidden layer consisting of elements with radial basis activation function to get a "normalized RBF"
* activation.
*/
object NNNormalizationMethod extends Enumeration {
type NNNormalizationMethod = Value
val none, simplemax, softmax = Value
}
trait HasNeuralNetworkAttributes extends HasModelAttributes {
def activationFunction: ActivationFunction
def normalizationMethod: NNNormalizationMethod
def threshold: Double
def width: Option[Double]
def altitude: Double
def numberOfLayers: Option[Int]
}
trait HasWrappedNeuralNetworkAttributes extends HasWrappedModelAttributes with HasNeuralNetworkAttributes {
override def attributes: NeuralNetworkAttributes
def activationFunction: ActivationFunction = attributes.activationFunction
def normalizationMethod: NNNormalizationMethod = attributes.normalizationMethod
def threshold: Double = attributes.threshold
def width: Option[Double] = attributes.width
def altitude: Double = attributes.altitude
def numberOfLayers: Option[Int] = attributes.numberOfLayers
}
class NeuralNetworkAttributes(
override val functionName: MiningFunction,
val activationFunction: ActivationFunction,
val normalizationMethod: NNNormalizationMethod = NNNormalizationMethod.none,
val threshold: Double = 0.0,
val width: Option[Double] = None,
val altitude: Double = 1.0,
val numberOfLayers: Option[Int] = None,
override val modelName: Option[String] = None,
override val algorithmName: Option[String] = None,
override val isScorable: Boolean = true
) extends ModelAttributes(functionName, modelName, algorithmName, isScorable) with HasNeuralNetworkAttributes
/**
* An input neuron represents the normalized value for an input field. A numeric input field is usually mapped to a
* single input neuron while a categorical input field is usually mapped to a set of input neurons using some fan-out
* function. The normalization is defined using the elements NormContinuous and NormDiscrete defined in the
* Transformation Dictionary. The element DerivedField is the general container for these transformations.
*/
class NeuralInputs(val neuralInputs: Array[NeuralInput], val numberOfInputs: Option[Int]) extends PmmlElement
/**
* Defines how input fields are normalized so that the values can be processed in the neural network. For example,
* string values must be encoded as numeric values.
*/
class NeuralInput(val id: String, val derivedField: DerivedField) extends PmmlElement
class NeuralLayer(
val neurons: Array[Neuron],
val numberOfNeurons: Option[Int] = None,
val activationFunction: Option[ActivationFunction] = None,
val threshold: Option[Double] = None,
val width: Option[Double] = None,
val altitude: Option[Double] = None,
val normalizationMethod: Option[NNNormalizationMethod] = None
) extends PmmlElement
class NeuralOutputs(val neuralOutputs: Array[NeuralOutput], val numberOfOutputs: Option[Int]) extends PmmlElement
/**
* Defines how the output of the neural network must be interpreted.
*/
class NeuralOutput(val outputNeuron: String, val derivedField: DerivedField) extends PmmlElement
/**
* Contains an identifier id which must be unique in all layers. The attribute bias implicitly defines a connection to
* a bias unit where the unit's value is 1.0 and the weight is the value of bias. The activation function and
* normalization method for Neuron can be defined in NeuralLayer. If either one is not defined for the layer then the
* default one specified for NeuralNetwork applies. If the activation function is radialBasis, the attribute width must
* be specified either in Neuron, NeuralLayer or NeuralNetwork. Again, width specified in Neuron will override a
* respective value from NeuralLayer, and in turn will override a value given in NeuralNetwork.
*
* Weighted connections between neural net nodes are represented by Con elements.
*/
class Neuron(
val cons: Array[Con],
val id: String,
val bias: Option[Double] = None,
val width: Option[Double] = None,
val altitude: Option[Double] = None) extends PmmlElement
/** Defines the connections coming into that parent element. The neuron identified by from may be part of any layer. */
class Con(val from: String, val weight: Double) extends PmmlElement
class NeuralNetworkOutputs extends MixedClsWithRegOutputs {
override def modelElement: ModelElement = ModelElement.NeuralNetwork
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy