org.pmml4s.xml.AnomalyDetectionBuilder.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml4s_2.12 Show documentation
Show all versions of pmml4s_2.12 Show documentation
A PMML scoring library in Scala
The newest version!
/*
* Copyright (c) 2017-2023 AutoDeployAI
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.pmml4s.xml
import org.pmml4s.NotSupportedException
import org.pmml4s.model._
/**
* Builder of Anomaly Detection Model
*/
class AnomalyDetectionBuilder extends Builder[AnomalyDetectionModel] {
protected var attributes: AnomalyDetectionAttributes = _
private var model: Model = _
private var meanClusterDistances: MeanClusterDistances = _
/** Builds an Anomaly Detection model from a specified XML reader, which points the element */
override def build(reader: XMLEventReader, attrs: XmlAttrs, parent: Model): AnomalyDetectionModel = {
this.parent = parent
this.attributes = makeAttributes(attrs)
traverseModel(reader, ElemTags.ANOMALY_DETECTION_MODEL, {
case EvElemStart(_, label, attrs, _) if ModelBuilder.PMML_SUPPORTED_MODELS contains label => {
val builder = Builder.get(label).getOrElse(throw new NotSupportedException(label))
model = builder.build(reader, attrs, new MutableAnomalyDetectionModel(parent))
builder.postBuild()
}
case EvElemStart(_, ElemTags.MEAN_CLUSTER_DISTANCES, attrs, _) => {
meanClusterDistances = makeMeanClusterDistances(reader, attrs)
}
})
val result = new AnomalyDetectionModel(parent, attributes, miningSchema,
model, Option(meanClusterDistances),
output, localTransformations, modelVerification, extensions.toIndexedSeq)
model.parent = result
result
}
def makeMeanClusterDistances(reader: XMLEventReader, attrs: XmlAttrs): MeanClusterDistances = makeElem(reader, attrs,
new ElemBuilder[MeanClusterDistances] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): MeanClusterDistances = {
var array: Array[Double] = null
traverseElems(reader, ElemTags.MEAN_CLUSTER_DISTANCES, {
case EvElemStart(_, ElemTags.ARRAY, attrs, _) => array = makeRealArray(reader, attrs)
})
new MeanClusterDistances(array)
}
})
/** Extracts these common attributes with model specific from a model */
override protected def makeAttributes(attrs: XmlAttrs): AnomalyDetectionAttributes = {
val attributes = super.makeAttributes(attrs)
new AnomalyDetectionAttributes(
functionName = attributes.functionName,
modelName = attributes.modelName,
algorithmName = attributes.algorithmName,
isScorable = attributes.isScorable,
algorithmType = AlgorithmType.withName(attrs(AttrTags.ALGORITHM_TYPE)),
sampleDataSize = attrs.getLong(AttrTags.SAMPLE_DATA_SIZE))
}
/** Name of the builder. */
override def name: String = ElemTags.ANOMALY_DETECTION_MODEL
}
class MutableAnomalyDetectionModel extends MutableModel {
def this(parent: Model) = {
this()
this.parent = parent
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy