org.pmml4s.xml.NaiveBayesBuilder.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml4s_2.12 Show documentation
Show all versions of pmml4s_2.12 Show documentation
A PMML scoring library in Scala
The newest version!
/*
* Copyright (c) 2017-2023 AutoDeployAI
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.pmml4s.xml
import org.pmml4s.common.ContinuousDistribution
import org.pmml4s.metadata.Field
import org.pmml4s.model._
import org.pmml4s.transformations.DerivedField
import scala.collection.mutable.ArrayBuffer
/**
* Builder of Naive Bayes Model
*/
class NaiveBayesBuilder extends Builder[NaiveBayesModel] {
protected var attributes: NaiveBayesAttributes = _
private var bayesInputs: BayesInputs = _
private var bayesOutput: BayesOutput = _
/** Builds a PMML model from a specified XML reader. */
override def build(reader: XMLEventReader, attrs: XmlAttrs, parent: Model): NaiveBayesModel = {
this.parent = parent
this.attributes = makeAttributes(attrs)
traverseModel(reader, ElemTags.NAIVE_BAYES_MODEL, {
case EvElemStart(_, ElemTags.BAYES_INPUTS, _, _) => bayesInputs = makeBayesInputs(reader)
case EvElemStart(_, ElemTags.BAYES_OUTPUT, attrs, _) => bayesOutput = makeBayesOutput(reader, attrs)
})
new NaiveBayesModel(parent, attributes, miningSchema,
bayesInputs, bayesOutput,
output, targets, localTransformations, modelStats, modelExplanation, modelVerification, extensions.toIndexedSeq)
}
private def makeBayesInputs(reader: XMLEventReader): BayesInputs = {
val inputs = makeElems(reader, ElemTags.BAYES_INPUTS, ElemTags.BAYES_INPUT,
new ElemBuilder[BayesInput] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): BayesInput = {
val fieldName = attrs(AttrTags.FIELD_NAME)
val f = field(fieldName)
var targetValueStats: Option[TargetValueStats] = None
val pairCounts = new ArrayBuffer[PairCounts]()
var derivedField: Option[DerivedField] = None
traverseElems(reader, ElemTags.BAYES_INPUT, {
case EvElemStart(_, ElemTags.TARGET_VALUE_STATS, _, _) => targetValueStats = {
val targetValueStats = makeElems(reader, ElemTags.TARGET_VALUE_STATS, ElemTags.TARGET_VALUE_STAT,
new ElemBuilder[TargetValueStat] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): TargetValueStat = {
val value = verifyValue(attrs(AttrTags.VALUE), target)
var distribution: ContinuousDistribution = null
traverseElems(reader, ElemTags.TARGET_VALUE_STAT, {
case event: EvElemStart if ContinuousDistribution.contains(event.label) =>
distribution = makeContinuousDistribution(reader, event)
case _ =>
})
new TargetValueStat(value, distribution)
}
})
Some(new TargetValueStats(targetValueStats))
}
case EvElemStart(_, ElemTags.DERIVED_FIELD, attrs, _) => derivedField = Option(makeDerivedField(reader, attrs))
case EvElemStart(_, ElemTags.PAIR_COUNTS, attrs, _) => pairCounts += makeElem(reader, attrs, new ElemBuilder[PairCounts] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): PairCounts = {
val af: Field = derivedField.getOrElse(f)
val value = verifyValue(attrs(AttrTags.VALUE), af)
val targetValueCounts = makeElem(reader, ElemTags.PAIR_COUNTS, ElemTags.TARGET_VALUE_COUNTS,
new ElemBuilder[TargetValueCounts] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): TargetValueCounts = makeTargetValueCounts(reader)
})
new PairCounts(value, targetValueCounts.get)
}
})
case _ =>
})
new BayesInput(f, targetValueStats, pairCounts.toArray, derivedField)
}
})
new BayesInputs(inputs)
}
private def makeBayesOutput(reader: XMLEventReader, attrs: XmlAttrs): BayesOutput = makeElem(reader, attrs,
new ElemBuilder[BayesOutput] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): BayesOutput = {
val fieldName = attrs(AttrTags.FIELD_NAME)
val f = field(fieldName)
val targetValueCounts = makeElem(reader, ElemTags.BAYES_OUTPUT, ElemTags.TARGET_VALUE_COUNTS,
new ElemBuilder[TargetValueCounts] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): TargetValueCounts = makeTargetValueCounts(reader)
})
new BayesOutput(f, targetValueCounts.get)
}
})
private def makeTargetValueCounts(reader: XMLEventReader): TargetValueCounts = {
val targetValueCounts = makeElems(reader, ElemTags.TARGET_VALUE_COUNTS, ElemTags.TARGET_VALUE_COUNT,
new ElemBuilder[TargetValueCount] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): TargetValueCount = {
val value = verifyValue(attrs(AttrTags.VALUE), target)
val count = attrs.double(AttrTags.COUNT)
new TargetValueCount(value, count)
}
})
new TargetValueCounts(targetValueCounts)
}
/** Extracts these common attributes from a model */
override protected def makeAttributes(attrs: XmlAttrs): NaiveBayesAttributes = {
val attributes = super.makeAttributes(attrs)
new NaiveBayesAttributes(
threshold = attrs.double(AttrTags.THRESHOLD),
functionName = attributes.functionName,
modelName = attributes.modelName,
algorithmName = attributes.algorithmName,
isScorable = attributes.isScorable)
}
/** Name of the builder. */
override def name: String = ElemTags.NAIVE_BAYES_MODEL
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy