org.pmml4s.model.TransformationModel.scala Maven / Gradle / Ivy
/*
* Copyright (c) 2017-2019 AutoDeploy AI
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.pmml4s.model
import org.pmml4s.common.{Header, ModelOutputs}
import org.pmml4s.data.{CombinedSeries, Series}
import org.pmml4s.metadata.{DataDictionary, OutputField, ResultFeature}
import org.pmml4s.transformations.TransformationDictionary
class TransformationModel(
override val version: String,
override val header: Header,
override val dataDictionary: DataDictionary,
override val transformationDictionary: Option[TransformationDictionary])
extends DataModel(version, header, dataDictionary, transformationDictionary) {
require(transformationDictionary.nonEmpty, "TransformationDictionary is required for a transformation model")
override lazy val inputNames: Array[String] = dataDictionary.map(_.name).toArray
override def modelElement: ModelElement = ModelElement.TransformationModel
override def predict(values: Series): Series = {
val (series, returnInvalid) = prepare(values)
if (returnInvalid) {
return nullSeries
}
val res = transformationDictionary.get.transform(series)
res.asInstanceOf[CombinedSeries].individualRows.last
}
override def defaultOutputFields: Array[OutputField] = {
transformationDictionary.get.map(x =>
new OutputField(x.name, x.displayName, x.dataType, x.opType, ResultFeature.transformedValue, expr=Some(x.expr))).toArray
}
/** Creates an object of subclass of ModelOutputs that is for writing into an output series. */
override def createOutputs(): ModelOutputs = new ModelOutputs() {}
}