Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright (c) 2017-2023 AutoDeployAI
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.pmml4s.xml
import org.pmml4s.common._
import org.pmml4s.metadata.{DataDictionary, DataField, Field}
import org.pmml4s.model.{DataModel, Model}
import org.pmml4s.transformations.TransformationDictionary
import org.pmml4s.{ElementNotFoundException, NotSupportedException, PmmlException, metadata}
import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer
import scala.io.Source
/**
* Base builder of PMML model
*/
class ModelBuilder extends TransformationsBuilder
with ElemBuilder[Model] {
private var version: String = _
private var header: Header = _
private var dataDict: DataDictionary = _
private var transDict: TransformationDictionary = _
private var extensions = ArrayBuffer.empty[Extension]
def build(reader: XMLEventReader, attrs: XmlAttrs): Model = {
version = attrs(AttrTags.VERSION)
makeModel(reader)
}
private def makeModel(reader: XMLEventReader): Model = {
while (reader.hasNext) {
reader.next() match {
case EvElemStart(_, ElemTags.HEADER, attrs, _) => {
header = makeHeader(reader, attrs)
}
case EvElemStart(_, ElemTags.MINING_BUILD_TASK, _, _) => {
handleElem(reader, ElemTags.MINING_BUILD_TASK)
}
case EvElemStart(_, ElemTags.DATA_DICTIONARY, attrs, _) => {
dataDict = makeDataDictionary(reader, attrs)
}
case EvElemStart(_, ElemTags.TRANSFORMATION_DICTIONARY, _, _) => {
transDict = makeTransformationDictionary(reader)
}
case EvElemStart(_, ElemTags.EXTENSION, attrs, _) => {
extHandler(reader, attrs).foreach(extensions += _)
}
case EvElemStart(_, label, attrs, _) => {
if (ModelBuilder.contains(label)) {
validate()
val parent = new DataModel(version, header, dataDict, Option(transDict))
val builder = Builder.get(label).getOrElse(throw new NotSupportedException(label))
val model = builder.build(reader, attrs, parent)
if (dataDict.exists(_.isMutable)) {
dataDict.foreach(_.toImmutable())
}
builder.postBuild()
return model
} else {
throw new PmmlException(s"${label} is not a standard of PMML")
}
}
case EvElemEnd(_, ElemTags.PMML) => {
validate()
val parent = new DataModel(version, header, dataDict, Option(transDict))
return if (parent.transformationDictionary.isDefined) parent.asTransformation else parent
}
case _ =>
}
}
throw new PmmlException("Not a valid PMML")
}
private def makeHeader(reader: XMLEventReader, attrs: XmlAttrs): Header =
makeElem(reader, attrs, new ElemBuilder[Header] {
def build(reader: XMLEventReader, attrs: XmlAttrs): Header = {
val values = attrs.get(AttrTags.COPYRIGHT, AttrTags.DESCRIPTION, AttrTags.MODEL_VERSION)
val app: Option[Application] = makeElem(reader, ElemTags.HEADER, ElemTags.APPLICATION, new ElemBuilder[Application] {
def build(reader: XMLEventReader, attrs: XmlAttrs): Application =
new Application(attrs(AttrTags.NAME), attrs.get(AttrTags.VERSION))
})
new Header(values._1, values._2, values._3, app)
}
})
private def makeDataDictionary(reader: XMLEventReader, attrs: XmlAttrs): DataDictionary = {
val fields = makeElems(reader, ElemTags.DATA_DICTIONARY, ElemTags.DATA_FIELD, new ElemBuilder[DataField] {
def build(reader: XMLEventReader, attrs: XmlAttrs): DataField = {
val name = attrs(AttrTags.NAME)
val opType = OpType.withName(attrs(AttrTags.OPTYPE))
val dataType = attrs.get(AttrTags.DATA_TYPE).map { x => DataType.withName(x) } getOrElse (UnresolvedDataType)
val displayName = attrs.get(AttrTags.DISPLAY_NAME)
val intervals = mutable.ArrayBuilder.make[Interval]
val values = mutable.ArrayBuilder.make[Value]
traverseElems(reader, ElemTags.DATA_FIELD, {
case EvElemStart(_, ElemTags.INTERVAL, attrs, _) => intervals += makeInterval(reader, attrs)
case EvElemStart(_, ElemTags.VALUE, attrs, _) => values += makeValue(reader, attrs)
case _ =>
})
new DataField(name, displayName, dataType, opType, intervals.result(), values.result())
}
})
metadata.DataDictionary(fields)
}
def validate(): Unit = {
if (header == null) throw new ElementNotFoundException(ElemTags.HEADER)
if (dataDict == null) throw new ElementNotFoundException(ElemTags.DATA_DICTIONARY)
}
/**
* Returns the field of a given name, None if a field with the given name does not exist
*/
override def getField(name: String): Option[Field] = {
val res = if (dataDict != null) dataDict.get(name) else None
res orElse super.getField(name)
}
}
object ModelBuilder extends ExtensionHandler with XmlUtils {
/**
* @param src
* @return A built model ready to score an input data if successful, a PmmlExcpetion is thrown otherwise
*/
def fromXml(src: Source): Model = {
val reader = new XMLEventReader(src)
while (reader.hasNext) {
reader.next() match {
case event: EvElemStart => if (event.label == ElemTags.PMML) {
return makeElem(reader, event, new ModelBuilder)
} else throw new PmmlException("A PMML document is an XML document with a root element of type PMML")
case _ =>
}
}
throw new PmmlException("Not a valid PMML")
}
/**
* @param reader
* @param label
* @param attrs
* @param parent
* @return
*/
def fromXml(reader: XMLEventReader, label: String, attrs: XmlAttrs, parent: Model): Model = {
Builder.get(label).getOrElse(throw new NotSupportedException(label)).build(reader, attrs, parent)
}
/** List of models supported by the PMML 4.4: [[http://dmg.org/pmml/v4-3/GeneralStructure.html PMML 4.4 - General Structure]] */
val PMML_SUPPORTED_MODELS = Set(
ElemTags.ANOMALY_DETECTION_MODEL,
ElemTags.ASSOCIATION_MODEL,
ElemTags.BAYESIAN_NETWORK_MODEL,
ElemTags.BASELINE_MODEL,
ElemTags.CLUSTERING_MODEL,
ElemTags.GAUSSIAN_PROCESS_MODEL,
ElemTags.GENERAL_REGRESSION_MODEL,
ElemTags.MINING_MODEL,
ElemTags.NAIVE_BAYES_MODEL,
ElemTags.NEAREST_NEIGHBOR_MODEL,
ElemTags.NEURAL_NETWORK,
ElemTags.REGRESSION_MODEL,
ElemTags.RULE_SET_MODEL,
ElemTags.SEQUENCE_MODEL,
ElemTags.SCORECARD,
ElemTags.SUPPORT_VECTOR_MACHINE_MODEL,
ElemTags.TEXT_MODEL,
ElemTags.TIME_SERIES_MODEL,
ElemTags.TREE_MODEL)
def contains(s: String): Boolean = {
PMML_SUPPORTED_MODELS.contains(s)
}
}