Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright (c) 2017-2024 AutoDeployAI
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.pmml4s.model
import org.pmml4s.common.CompareFunction.CompareFunction
import org.pmml4s.common.MiningFunction.MiningFunction
import org.pmml4s.common._
import org.pmml4s.data.{DataVal, Series}
import org.pmml4s.metadata._
import org.pmml4s.model.ModelClass.ModelClass
import org.pmml4s.transformations.LocalTransformations
import org.pmml4s.util.Utils
import scala.collection.{immutable, mutable}
/**
* A cluster model basically consists of a set of clusters. For each cluster a center vector can be given. In
* center-based models a cluster is defined by a vector of center coordinates. Some distance measure is used to
* determine the nearest center, that is the nearest cluster for a given input record. For distribution-based models
* (e.g., in demographic clustering) the clusters are defined by their statistics. Some similarity measure is used to
* determine the best matching cluster for a given record. The center vectors then only approximate the clusters.
*/
class ClusteringModel(
var parent: Model,
override val attributes: ClusteringAttributes,
override val miningSchema: MiningSchema,
val comparisonMeasure: ComparisonMeasure,
val clusteringFields: Array[ClusteringField],
val missingValueWeights: Option[MissingValueWeights],
val clusters: Array[Cluster],
override val output: Option[Output] = None,
override val targets: Option[Targets] = None,
override val localTransformations: Option[LocalTransformations] = None,
override val modelStats: Option[ModelStats] = None,
override val modelExplanation: Option[ModelExplanation] = None,
override val modelVerification: Option[ModelVerification] = None,
override val extensions: immutable.Seq[Extension] = immutable.Seq.empty)
extends Model with HasWrappedClusteringAttributes {
// A vector of field weight values, Wi, i=1,...,n
private val weights: Array[Double] = clusteringFields.map(_.fieldWeight)
private val compareFunctions: Array[CompareFunction] =
clusteringFields.map(_.compareFunction.getOrElse(comparisonMeasure.compareFunction))
private val similarityScales: Array[Double] = clusteringFields.map(_.similarityScale.getOrElse(1.0))
// A vector of adjustment values, Qi, i=1,...,n, all nonmissing Qi is the i-th value in the element
// MissingValueWeights. If the model does not have MissingValueWeights, Qi is assumed to be 1.0.
private val Qi: Array[Double] = missingValueWeights.map((_.array)).getOrElse(Array.fill(clusteringFields.length)(1.0))
private val sumQi = Qi.sum
private val dis = comparisonMeasure.distance
/** Model element type. */
override def modelElement: ModelElement = ModelElement.ClusteringModel
/** Predicts values for a given data series. */
override def predict(values: Series): Series = {
val (series, returnInvalid) = prepare(values)
if (returnInvalid) {
return nullSeries
}
var nonMissing: Double = 0.0
val nonMissingIdxBuilder = mutable.ArrayBuilder.make[Int]
nonMissingIdxBuilder.sizeHint(clusteringFields.length)
val xs = new Array[Double](clusteringFields.length)
var i = 0
while (i < clusteringFields.length) {
xs(i) = clusteringFields(i).field.getDouble(series)
if (Utils.nonMissing(xs(i))) {
nonMissing += Qi(i)
nonMissingIdxBuilder += i
}
i += 1
}
val nonMissingIdx = nonMissingIdxBuilder.result()
if (nonMissing == 0) {
return nullSeries
}
// The adjustment values are used to compute an adjustment factor
//
// sum[Qi]
// AdjustM = --------------------------
// sum[nonmissing(Xi)*Qi]
//
val adjustM = sumQi / nonMissing
val (id, name, affinities) = comparisonMeasure.kind match {
case ComparisonMeasureKind.distance => {
var min = Double.PositiveInfinity
var selected: DataVal = null
var name: Option[String] = None
val distances = mutable.Map.empty[DataVal, Double]
var i = 0
while (i < clusters.length) {
val distance = dis.distance(nonMissingIdx, compareFunctions, xs, clusters(i).array.get, weights,
adjustM, similarityScales)
val id = clusters(i).id.getOrElse(DataVal.from("" + (i + 1)))
if (distance < min) {
min = distance
selected = id
name = clusters(i).name
}
distances.put(id, distance)
i += 1
}
(selected, name, distances)
}
case ComparisonMeasureKind.similarity => {
var max = Double.NegativeInfinity
var selected: DataVal = null
var name: Option[String] = None
val similarities = mutable.Map.empty[DataVal, Double]
var i = 0
while (i < clusters.length) {
val similarity = dis.distance(nonMissingIdx, compareFunctions, xs, clusters(i).array.get, weights,
adjustM, similarityScales)
val id = clusters(i).id.getOrElse(DataVal.from("" + (i + 1)))
if (similarity > max) {
max = similarity
selected = id
name = clusters(i).name
}
similarities.put(id, similarity)
i += 1
}
(selected, name, similarities)
}
}
val outputs = createOutputs().
setPredictedValue(id).
setPredictedDisplayValue(name.orNull).
setEntityId(id).
setAffinities(affinities.toMap)
result(series, outputs)
}
/** Creates an object of ClusteringOutputs that is for writing into an output series. */
override def createOutputs(): ClusteringOutputs = new ClusteringOutputs
/** Returns all candidates output fields of this model when there is no output specified explicitly. */
override def defaultOutputFields: Array[OutputField] = {
val res = mutable.ArrayBuilder.make[OutputField]
res.sizeHint(3)
res += OutputField.predictedValue("cluster", "Identifier of the winning cluster", StringType, OpType.nominal)
if (clusters.head.name.isDefined) {
res += OutputField.predictedDisplayValue("cluster_name", "Name of the winning cluster")
}
res += (if (modelClass == ModelClass.centerBased) {
OutputField.affinity("distance", "Distance to the predicted entity")
} else {
OutputField.affinity("similarity", "Similarity to the predicted entity")
})
res.result()
}
}
/**
* @param field Refers (by name) to a MiningField or to a DerivedField.
* @param comparisons A matrix which contains the similarity values or distance values.
* @param isCenterField Indicates whether the respective field is a center field, i.e. a component of the center, in a
* center-based model. Only center fields correspond to the entries in the center vectors in order.
* @param fieldWeight The importance factor for the field. This field weight is used in the comparison functions in
* order to compute the comparison measure. The value must be a number greater than 0. The default
* value is 1.0.
* @param similarityScale The distance such that similarity becomes 0.5.
* @param compareFunction A function of taking two field values and a similarityScale to define similarity/distance.
* It can override the general specification of compareFunction in ComparisonMeasure.
*/
class ClusteringField(val field: Field,
val comparisons: Option[Comparisons],
val isCenterField: Boolean = true,
val fieldWeight: Double = 1.0,
val similarityScale: Option[Double] = None,
val compareFunction: Option[CompareFunction] = None
) extends PmmlElement
/**
* Comparisons is a matrix which contains the similarity values or distance values, depending on the attribute
* modelClass in ClusteringModel. The order of the rows and columns corresponds to the order of discrete values or
* intervals in that field.
*/
class Comparisons(val matrix: Matrix) extends PmmlElement
/**
* A cluster is defined by its center vector or by statistics. A center vector is implemented by a NUM-ARRAY. Each
* Partition corresponds to a cluster and holds field statistics to describe it. The definition of a cluster may
* contain a center vector as well as statistics. The attribute modelClass in the ClusteringModel defines which one is
* used to actually define the cluster.
*/
class Cluster(val id: Option[DataVal] = None,
val name: Option[String] = None,
val size: Option[Int] = None,
val kohonenMap: Option[KohonenMap] = None,
val array: Option[Array[Double]] = None,
val partition: Option[Partition] = None,
val covariances: Option[Covariances] = None) extends PmmlElement
/**
* The element KohonenMap is appropriate for clustering models that were produced by a Kohonen map algorithm. The
* attributes coord1, coord2 and coord3 describe the position of the current cluster in a map with up to three
* dimensions. This element is not relevant to the scoring function.
*/
class KohonenMap(val coord1: Option[Double], val coord2: Option[Double], val coord3: Option[Double]) extends PmmlElement
/**
* Stores coordinate-by-coordinate variances (diagonal cells) and covariances (non-diagonal cells).
*/
class Covariances(val matrix: Matrix) extends PmmlElement
/**
* MissingValueWeights is used to adjust distance or similarity measures for missing data.
*/
class MissingValueWeights(val array: Array[Double]) extends PmmlElement
object ModelClass extends Enumeration {
type ModelClass = Value
val centerBased, distributionBased = Value
}
trait HasClusteringAttributes extends HasModelAttributes {
/**
* Specifies whether the clusters are defined by center-vectors or whether they are defined by the statistics. The
* latter is used by distribution-based clustering.
*/
def modelClass: ModelClass
/**
* The numberOfClusters attribute must be equal to the number of Cluster elements in the ClusteringModel.
*/
def numberOfClusters: Int
}
trait HasWrappedClusteringAttributes extends HasWrappedModelAttributes with HasClusteringAttributes {
override def attributes: ClusteringAttributes
def modelClass: ModelClass = attributes.modelClass
def numberOfClusters: Int = attributes.numberOfClusters
}
class ClusteringAttributes(
val modelClass: ModelClass,
val numberOfClusters: Int,
override val functionName: MiningFunction,
override val modelName: Option[String] = None,
override val algorithmName: Option[String] = None,
override val isScorable: Boolean = true
) extends ModelAttributes(functionName, modelName, algorithmName, isScorable)
with HasClusteringAttributes {
def this(attributes: ModelAttributes, modelClass: ModelClass, numberOfClusters: Int) = {
this(modelClass, numberOfClusters, attributes.functionName, attributes.modelName, attributes.algorithmName, attributes.isScorable)
}
}
class ClusteringOutputs extends CluOutputs {
override def modelElement: ModelElement = ModelElement.ClusteringModel
}