org.pmml4s.model.GeneralRegressionModel.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml4s_3 Show documentation
Show all versions of pmml4s_3 Show documentation
A PMML scoring library in Scala
The newest version!
/*
* Copyright (c) 2017-2024 AutoDeployAI
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.pmml4s.model
import org.pmml4s.PmmlDeprecated
import org.pmml4s.common.MiningFunction.MiningFunction
import org.pmml4s.common._
import org.pmml4s.data.{DataVal, Series}
import org.pmml4s.metadata.{Field, MiningSchema, Output, Targets}
import org.pmml4s.model.CumulativeLinkFunction.CumulativeLinkFunction
import org.pmml4s.model.Distribution.Distribution
import org.pmml4s.model.GeneralModelType.GeneralModelType
import org.pmml4s.model.LinkFunction.LinkFunction
import org.pmml4s.model.PCovMatrixType.PCovMatrixType
import org.pmml4s.transformations.{LocalTransformations, StdNormalCDF}
import org.pmml4s.util.{MathUtils, Utils}
import scala.collection.{immutable, mutable}
/**
* Definition of a general regression model. As the name says it, this is intended to support a multitude of
* regression models.
*/
class GeneralRegressionModel(
var parent: Model,
override val attributes: GeneralRegressionAttributes,
override val miningSchema: MiningSchema,
val parameterList: ParameterList,
val factorList: Option[FactorList],
val covariateList: Option[CovariateList],
val ppMatrix: PPMatrix,
val pCovMatrix: Option[PCovMatrix],
val paramMatrix: ParamMatrix,
val eventValues: Option[EventValues],
val baseCumHazardTables: Option[BaseCumHazardTables],
override val output: Option[Output] = None,
override val targets: Option[Targets] = None,
override val localTransformations: Option[LocalTransformations] = None,
override val modelStats: Option[ModelStats] = None,
override val modelExplanation: Option[ModelExplanation] = None,
override val modelVerification: Option[ModelVerification] = None,
override val extensions: immutable.Seq[Extension] = immutable.Seq.empty)
extends Model with HasWrappedGeneralRegressionAttributes {
override val targetReferenceCategory: Option[DataVal] = attributes.targetReferenceCategory.map(targetField.toVal)
private[this] val parameters: Array[RegressionParameter] = parameterList.parameters.map(x => {
val cells = ppMatrix.getPPCells(x.name)
val factors = mutable.ArrayBuilder.make[FactorPredictor]
val covariances = mutable.ArrayBuilder.make[CovariatePredictor]
factors.sizeHint(cells.length)
covariances.sizeHint(cells.length)
cells.map(y => {
val name = y.predictorName.name
y.toPredictor(factorList.flatMap(_.get(name)).orNull) match {
case f: FactorPredictor => factors += f
case c: CovariatePredictor => covariances += c
case _ => ???
}
})
new RegressionParameter(factors.result(), covariances.result())
})
private[this] val betas: Map[DataVal, (Array[Int], Array[Double])] = {
val res = paramMatrix.cells.groupBy(_.targetCategory).
map(x => ((if (x._1.isDefined) x._1.get else null), (x._2.map(c => parameterList.indexOf(c.parameterName)), x._2.map(_.beta))))
if (isClassification && res.size == numClasses - 1) {
val miss: DataVal = targetReferenceCategory.getOrElse({
val missSet = classes.toSet -- res.keys
if (missSet.size == 1) {
missSet.head
} else null
})
if (miss != null) {
res + (miss -> (Array.emptyIntArray, Array.emptyDoubleArray))
} else res
} else res
}
private[this] val s: Double = if (modelType == GeneralModelType.CoxRegression) {
MathUtils.product(parameterList.parameters.map(_.referencePoint), paramMatrix.cells.map(_.beta))
} else Double.NaN
/** Model element type. */
override def modelElement: ModelElement = ModelElement.GeneralRegressionModel
/** Predicts values for a given data series. */
override def predict(values: Series): Series = {
val (series, returnInvalid) = prepare(values)
if (returnInvalid) {
return nullSeries
}
val outputs = new GeneralRegressionOutputs
val xs = parameters.map(_.eval(series))
import GeneralModelType._
modelType match {
case `regression` | `generalLinear` => {
val rs = betas.map(x => (x._1, MathUtils.product(x._2._1.map(ind => xs(ind)), x._2._2)))
outputs.setPredictedValue(rs.head._2)
}
case `multinomialLogistic` => {
val rs = betas.map(x => (x._1, MathUtils.product(x._2._1.map(ind => xs(ind)), x._2._2)))
outputs.setPredictedValue(rs.maxBy(_._2)._1)
if (!isPredictionOnly) {
val ss = rs.map(x => (x._1, rs.map(s => s._2 - x._2)))
val probabilities = ss.map(x => (x._1, {
// overflow
if (x._2.exists(_ > 700)) {
0.0
} else {
1.0 / (x._2.map(Math.exp).sum)
}
}))
outputs.setProbabilities(probabilities)
outputs.evalPredictedValueByProbabilities(classes)
}
}
case `ordinalMultinomial` => {
val a = offsetVariable.map(_.getDouble(series)).getOrElse(offsetValue.getOrElse(0.0))
val rs = betas.map(x => (x._1, MathUtils.product(x._2._1.map(ind => xs(ind)), x._2._2)))
val extra = rs.find(x => x._1 == null)
val ys = (if (extra.isDefined) {
rs.filter(x => x._1 != null).map(x => targetField.encode(x._1) -> (x._2 + extra.get._2))
} else {
rs.map(x => targetField.encode(x._1) -> x._2)
}).toArray.sortBy(_._1).map(_._2)
import CumulativeLinkFunction._
val fs = cumulativeLink.get match {
case `logit` => ys.map(y => 1.0 / (1.0 + Math.exp(-y)))
case `probit` => ys.map(y => StdNormalCDF.eval(y))
case `cloglog` => ys.map(y => 1 - Math.exp(-Math.exp(y)))
case `loglog` => ys.map(y => Math.exp(-Math.exp(y)))
case `cauchit` => ys.map(y => 0.5 + (1 / Math.PI) * Math.atan(y))
}
if (isBinary) {
outputs.setProbabilities(Map(classes(0) -> fs(0)))
outputs.evalPredictedValueByProbabilities(classes)
} else {
val probabilities = (for (i <- 0 until fs.length) yield {
classes(i) -> (if (i == 0) fs(i) else fs(i) - fs(i - 1))
}).toMap
outputs.setProbabilities(probabilities)
outputs.evalPredictedValueByProbabilities(classes)
}
}
case `generalizedLinear` => {
val a = offsetVariable.map(_.getDouble(series)).getOrElse(offsetValue.getOrElse(0.0))
val b: Int = trialsVariable.map(_.getDouble(series).toInt).getOrElse(trialsValue.getOrElse(1))
val y = betas.map(x => MathUtils.product(x._2._1.map(ind => xs(ind)), x._2._2)).head + a
import LinkFunction._
val predictedValue = b * (linkFunction.get match {
case `cloglog` => 1 - Math.exp(-Math.exp(y))
case `identity` => y
case `log` => Math.exp(y)
case `logc` => 1 - Math.exp(y)
case `logit` => 1 / (1 + Math.exp(-y))
case `loglog` => Math.exp(-Math.exp(-y))
case `negbin` => {
val c = distParameter.get
1 / (c * (Math.exp(-y) - 1))
}
case `oddspower` => {
val d = linkParameter.get
if (d != 0) {
1 / (1 + Math.pow(1 + d * y, -1 / d))
} else {
1 / (1 + Math.exp(-y))
}
}
case `power` => {
val d = linkParameter.get
if (d != 0) {
Math.pow(y, 1 / d)
} else {
Math.exp(y)
}
}
case `probit` => {
StdNormalCDF.eval(y)
}
})
if (distribution.isDefined && distribution.get == Distribution.binomial && isClassification) {
val p1 = if (predictedValue < 0) 0 else if (predictedValue > 1) 1 else predictedValue
outputs.setProbabilities(Map(betas.head._1 -> p1))
.evalPredictedValueByProbabilities(classes)
} else {
outputs.setPredictedValue(predictedValue)
}
}
case `CoxRegression` => {
var survival = Double.NaN
var hazard = Double.NaN
val tables = baseCumHazardTables.get
val (maxTime, minTime: Double, baselineCells) = if (baselineStrataVariable.isDefined) {
val value = baselineStrataVariable.map(_.get(series)).get
val baselineStratum = tables.getBaselineStratum(value)
if (baselineStratum.isEmpty) {
return nullSeries
}
(baselineStratum.get.maxTime, baselineStratum.get.cells.head.time, baselineStratum.get.cells)
} else {
(tables.maxTime.get, tables.baselineCells.head.time, tables.baselineCells)
}
val endTime = endTimeVariable.map(_.getDouble(series)).get
if (endTime < minTime) {
survival = 1
hazard = 0
} else if (endTime > maxTime) {
return nullSeries
} else {
val cell = findBaselineCell(baselineCells, endTime)
var h0 = cell.cumHazard
val r = betas.map(x => (x._1, MathUtils.product(x._2._1.map(ind => xs(ind)), x._2._2)))
hazard = h0 * Math.exp(r.head._2 - s)
survival = Math.exp(-hazard)
}
outputs.setPredictedValue(survival)
}
}
result(series, outputs)
}
def findBaselineCell(baselineCells: Array[BaselineCell], endTime: Double): BaselineCell = {
for (i <- baselineCells.length - 1 to 0) {
if (baselineCells(i).time <= endTime) {
return baselineCells(i)
}
}
baselineCells(0)
}
/** Creates an object of GeneralRegressionOutputs that is for writing into an output series. */
override def createOutputs(): ModelOutputs = new GeneralRegressionOutputs
}
/**
* Each Parameter contains a required name and optional label.
*
* @param name Should be unique within the model and as brief as possible (since Parameter names appear
* frequently in the document).
* @param label If present, is meant to give a hint on a Parameter's correlation with the Predictors.
* @param referencePoint The optional attribute referencePoint is used in Cox regression models only and has a default
* value of 0
*/
class Parameter(val name: String, val label: Option[String] = None, val referencePoint: Double = 0.0) extends PmmlElement
/**
* Lists all Parameters. ParameterList can be empty only for CoxRegression models, for other models at least one
* Parameter should be present.
*/
class ParameterList(val parameters: Array[Parameter]) extends PmmlElement {
private lazy val nameToIndex: Map[String, Int] = parameters.zipWithIndex.map(x => (x._1.name, x._2)).toMap
def size: Int = parameters.length
def indexOf(name: String): Int = nameToIndex(name)
}
/**
* Describes a categorical (factor) or a continuous (covariate) predictor for the model. When describing a factor, it
* can optionally contain a list of categories and a contrast matrix. Such matrix describes the codings of categorical
* variables. If a categorical variable has n values, there will be n rows and n-1 or n columns in the matrix. The rows
* and columns correspond to the categories of the factor in the order listed in the Category element if it is present,
* otherwise in the order listed in the DataField or DerivedField element. If the Categories element is present and the
* corresponding DataField or DerivedField element has a list of valid categories, then the list in Categories should
* be a subset of that in DataField or DerivedField. A contrast matrix with n-1 columns helps to reduce the total
* number of parameters in the model.
*/
class Predictor(
val name: String,
val contrastMatrixType: Option[String] = None,
val categories: Option[Categories] = None,
val matrix: Option[Matrix] = None) extends PmmlElement
/**
* List of factor (categorical predictor) names. Not present if this particular regression flavor does not support
* factors (ex. linear regression). If present, the list may or may not be empty. Each name in the list must match a
* DataField name or a DerivedField name. The factors must be categorical variables.
*/
class FactorList(val predictors: Array[Predictor]) extends PmmlElement {
private lazy val nameToPredictor: Map[String, Predictor] = predictors.map(x => (x.name, x)).toMap
def get(name: String): Option[Predictor] = nameToPredictor.get(name)
}
class Category(val value: DataVal) extends PmmlElement
class Categories(val categories: Array[Category]) extends PmmlElement {
require(categories.length > 0, "At least one category is required.")
lazy val valueToIndex: Map[DataVal, Int] = categories.map(_.value).zipWithIndex.toMap
}
/**
* List of covariate names. Will not be present when there is no covariate. Each name in the list must match a
* DataField name or a DerivedField name. The covariates will be treated as continuous variables.
*/
class CovariateList(val predictors: Array[Predictor]) extends PmmlElement {
private lazy val nameToPredictor: Map[String, Predictor] = predictors.map(x => (x.name, x)).toMap
def get(name: String): Option[Predictor] = nameToPredictor.get(name)
}
/**
* Predictor-to-Parameter correlation matrix. It is a rectangular matrix having a column for each Predictor (factor or
* covariate) and a row for each Parameter. The matrix is represented as a sequence of cells, each cell containing a
* number representing the correlation between the Predictor and the Parameter.
*/
class PPMatrix(val cells: Array[PPCell]) extends PmmlElement {
def getPPCells(name: String): Array[PPCell] = {
cells.filter(x => x.parameterName == name)
}
}
/** Cell in the PPMatrix. Knows its row name, column name. */
class PPCell(val value: DataVal,
val predictorName: Field,
val parameterName: String,
val targetCategory: Option[DataVal] = None) extends PmmlElement {
def toPredictor(p: Predictor): RegressionPredictor = if (predictorName.isCategorical) {
if (p != null && p.matrix.isDefined && p.categories.isDefined) {
new ContrastMatrixFactorPredictor(predictorName, value, p.categories.get.valueToIndex, p.matrix.get)
} else {
new FactorPredictor(predictorName, value)
}
} else {
new CovariatePredictor(predictorName, Utils.toDouble(value))
}
}
object PCovMatrixType extends Enumeration {
type PCovMatrixType = Value
val model, robust = Value
}
/**
* Matrix of Parameter estimate covariances. Made up of PCovCells, each of them being located via row information for
* Parameter name (pRow), row information for target variable value (tRow), column information for Parameter name (pCol)
* and column information for target variable value (tCol). Note that the matrix is symmetric with respect to the main
* diagonal (interchanging tRow and tCol together with pRow and pCol will not change the value). Therefore it is
* sufficient that only half of the matrix be exported. Attributes tRow and tCol are optional since they are not needed
* for linear regression models. This element has an optional attribute type that can take values model and robust.
* This attribute describes the way the covariance matrix was computed in generalizedLinear model. The robust option is
* also known as Huber-White or sandwich or HCCM.
*/
class PCovMatrix(val cells: Array[PCovCell], val tpe: Option[PCovMatrixType]) extends PmmlElement
class PCovCell(val pRow: String,
val pCol: String,
val value: Double,
val tRow: Option[String] = None,
val tCol: Option[String] = None,
val targetCategory: Option[DataVal] = None) extends PmmlElement
/**
* Parameter matrix. A table containing the Parameter values along with associated statistics (degrees of freedom). One
* dimension has the target variable's categories, the other has the Parameter names. The table is represented by
* specifying each cell. There is no requirement for Parameter names other than that each name should uniquely identify
* one Parameter.
*/
class ParamMatrix(val cells: Array[PCell]) extends PmmlElement
/**
* Cell in the ParamMatrix. The optional targetCategory and required parameterName attributes determine the cell's
* location in the Parameter matrix. The information contained is: beta (actual Parameter value, required), and df
* (degrees of freedom, optional). For ordinalMultinomial model ParamMatrix specifies different values for the
* intercept parameter: one for each target category except one. Values for all other parameters are constant across
* all target variable values. For multinomialLogistic model ParamMatrix specifies parameter estimates for each target
* category except the reference category.
*/
class PCell(val parameterName: String, val beta: Double, val targetCategory: Option[DataVal], val df: Option[Int]) extends PmmlElement
class EventValues(val values: Array[Value], val intervals: Array[Interval]) extends PmmlElement
class BaseCumHazardTables(val baselineStratums: Array[BaselineStratum], val baselineCells: Array[BaselineCell], val maxTime: Option[Double]) extends PmmlElement {
private lazy val valueToBaselineStratum: Map[DataVal, BaselineStratum] = baselineStratums.map(x => (x.value, x)).toMap
def getBaselineStratum(value: DataVal): Option[BaselineStratum] = valueToBaselineStratum.get(value)
}
class BaselineStratum(val cells: Array[BaselineCell], val value: DataVal, val maxTime: Double, val label: Option[String]) extends PmmlElement
class BaselineCell(val time: Double, val cumHazard: Double) extends PmmlElement
/**
* Specifies the type of regression model in use. This information will be used to select the appropriate mathematical
* formulas during scoring.
*/
object GeneralModelType extends Enumeration {
type GeneralModelType = Value
val regression, generalLinear, multinomialLogistic, ordinalMultinomial, generalizedLinear, CoxRegression = Value
}
/**
* Definition is used for specifies the type of link function to use when generalizedLinear model type is specified.
*/
object LinkFunction extends Enumeration {
type LinkFunction = Value
val cloglog, identity, log, logc, logit, loglog, negbin, oddspower, power, probit = Value
}
/**
* Definition is used for specifying a cumulative link function used in ordinalMultinomial model.
*/
object CumulativeLinkFunction extends Enumeration {
type CumulativeLinkFunction = Value
val logit, probit, cloglog, loglog, cauchit = Value
}
/**
* The probability distribution of the dependent variable for generalizedLinear model.
*/
object Distribution extends Enumeration {
type Distribution = Value
val binomial, gamma, igauss, negbin, normal, poisson, tweedie = Value
}
trait HasGeneralRegressionAttributes extends HasModelAttributes {
/**
* Name of the target variable (also called response variable). This attribute has been deprecated since PMML 3.0.
* If present, it should match the name of the target MiningField.
*/
@PmmlDeprecated(since = "3.0")
def targetVariableName: Option[String]
/** Specifies the type of regression model in use. */
def modelType: GeneralModelType
/**
* Used for specifying the reference category of the target variable in a multinomial classification model. Normally
* the reference category is the one from DataDictionary that does not appear in the ParamMatrix, but when several
* models are combined in one PMML file an explicit specification is needed.
*/
def targetReferenceCategory: Option[DataVal]
/** Specifies the type of cumulative link function to use when ordinalMultinomial model type is specified. */
def cumulativeLink: Option[CumulativeLinkFunction]
/** Specifies the type of link function to use when generalizedLinear model type is specified. */
def linkFunction: Option[LinkFunction]
/** Specifies an additional number the following link functions need: oddspower and power. */
def linkParameter: Option[Double]
/**
* Specifies an additional variable used during scoring some generalizedLinear models (see the description of scoring
* procedure below). This attribute must refer to a DataField or a DerivedField. This attribute can only be used when
* the distribution is binomial.
*/
def trialsVariable: Option[Field]
/**
* A positive integer used during scoring some generalizedLinear models (see the description of scoring procedure
* below). At most one of the attributes trialsVariable and trialsValue can be present in a model. This attribute can
* only be used when the distribution is binomial.
*/
def trialsValue: Option[Int]
/**
* The probability distribution of the dependent variable for generalizedLinear model may be specified as normal,
* binomial, gamma, inverse Gaussian, negative binomial, or Poisson. Note that binomial distribution can be used in
* two situations: either the target is categorical with two categories or a trialsVariable or trialsValue is
* specified.
*/
def distribution: Option[Distribution]
/** Specifies an ancillary parameter value for the negative binomial distribution. */
def distParameter: Option[Double]
/**
* If present, this variable is used during scoring generalizedLinear, ordinalMultinomial, or multinomialLogistic
* models (see the description of scoring procedures below). This attribute must refer to a DataField or a
* DerivedField.
*/
def offsetVariable: Option[Field]
/**
* If present, this value is used during scoring generalizedLinear, ordinalMultinomial, or multinomialLogistic models.
* It works like a user-specified intercept (see the description of the scoring procedures below). At most one of the
* attributes offsetVariable and offsetValue can be present in a model.
*/
def offsetValue: Option[Double]
/**
* The value of degrees of freedom for the model. This value is needed for computing confidence intervals for
* predicted values.
*/
def modelDF: Option[Double]
/**
* If modelType is CoxRegression, this variable is required during scoring (see the description of scoring procedures
* below). This attribute must refer to a DataField or a DerivedField containing a continuous variable.
*/
def endTimeVariable: Option[Field]
/**
* If modelType is CoxRegression, this variable is optional, it is not used during scoring but is an important piece
* of information about model building. This attribute must refer to a DataField or a DerivedField containing a
* continuous variable.
*/
def startTimeVariable: Option[Field]
/**
* If modelType is CoxRegression, this variable is optional, it is not used during scoring but is an important piece
* of information about model building. This attribute must refer to a DataField or a DerivedField. Explicitly
* listing all categories of this variable is not recommended.
*/
def subjectIDVariable: Option[Field]
/**
* If modelType is CoxRegression, this variable is optional. This attribute must refer to a DataField or a
* DerivedField.
*/
def statusVariable: Option[Field]
/**
* If modelType is CoxRegression, this variable is optional, if present it is used during scoring (see the
* description of scoring procedures below). This attribute must refer to a DataField or a DerivedField containing a
* categorical variable.
*/
def baselineStrataVariable: Option[Field]
}
trait HasWrappedGeneralRegressionAttributes extends HasWrappedModelAttributes with HasGeneralRegressionAttributes {
override def attributes: GeneralRegressionAttributes
override def targetVariableName: Option[String] = attributes.targetVariableName
override def modelType: GeneralModelType = attributes.modelType
override def cumulativeLink: Option[CumulativeLinkFunction] = attributes.cumulativeLink
override def linkFunction: Option[LinkFunction] = attributes.linkFunction
override def linkParameter: Option[Double] = attributes.linkParameter
override def trialsVariable: Option[Field] = attributes.trialsVariable
override def trialsValue: Option[Int] = attributes.trialsValue
override def distribution: Option[Distribution] = attributes.distribution
override def distParameter: Option[Double] = attributes.distParameter
override def offsetVariable: Option[Field] = attributes.offsetVariable
override def offsetValue: Option[Double] = attributes.offsetValue
override def modelDF: Option[Double] = attributes.modelDF
override def endTimeVariable: Option[Field] = attributes.endTimeVariable
override def startTimeVariable: Option[Field] = attributes.startTimeVariable
override def subjectIDVariable: Option[Field] = attributes.subjectIDVariable
override def statusVariable: Option[Field] = attributes.statusVariable
override def baselineStrataVariable: Option[Field] = attributes.baselineStrataVariable
}
class GeneralRegressionAttributes(
override val functionName: MiningFunction,
val modelType: GeneralModelType,
val targetVariableName: Option[String] = None,
val targetReferenceCategory: Option[String] = None,
val cumulativeLink: Option[CumulativeLinkFunction] = None,
val linkFunction: Option[LinkFunction] = None,
val linkParameter: Option[Double] = None,
val trialsVariable: Option[Field] = None,
val trialsValue: Option[Int] = None,
val distribution: Option[Distribution] = None,
val distParameter: Option[Double] = None,
val offsetVariable: Option[Field] = None,
val offsetValue: Option[Double] = None,
val modelDF: Option[Double] = None,
val endTimeVariable: Option[Field] = None,
val startTimeVariable: Option[Field] = None,
val subjectIDVariable: Option[Field] = None,
val statusVariable: Option[Field] = None,
val baselineStrataVariable: Option[Field] = None,
override val modelName: Option[String] = None,
override val algorithmName: Option[String] = None,
override val isScorable: Boolean = true)
extends ModelAttributes(functionName, modelName, algorithmName, isScorable)
class GeneralRegressionOutputs extends MixedClsWithRegOutputs {
override def modelElement: ModelElement = ModelElement.GeneralRegressionModel
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy