org.pmml4s.xml.NeuralNetworkBuilder.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of pmml4s_3 Show documentation
Show all versions of pmml4s_3 Show documentation
A PMML scoring library in Scala
The newest version!
/*
* Copyright (c) 2017-2023 AutoDeployAI
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.pmml4s.xml
import org.pmml4s.model._
import org.pmml4s.transformations.DerivedField
import scala.collection.mutable
/**
* Builder of Neural Network model.
*/
class NeuralNetworkBuilder extends Builder[NeuralNetwork] {
protected var attributes: NeuralNetworkAttributes = _
private var neuralInputs: NeuralInputs = _
private var neuralOutputs: NeuralOutputs = _
private val neuralLayers = mutable.ArrayBuilder.make[NeuralLayer]
/** Builds a Neural Network model from a specified XML reader. */
override def build(reader: XMLEventReader, attrs: XmlAttrs, parent: Model): NeuralNetwork = {
this.parent = parent
this.attributes = makeAttributes(attrs)
traverseModel(reader, ElemTags.NEURAL_NETWORK, {
case EvElemStart(_, ElemTags.NEURAL_INPUTS, attrs, _) => neuralInputs = makeNeuralInputs(reader, attrs)
case EvElemStart(_, ElemTags.NEURAL_LAYER, attrs, _) => neuralLayers += makeNeuralLayer(reader, attrs)
case EvElemStart(_, ElemTags.NEURAL_OUTPUTS, attrs, _) => neuralOutputs = makeNeuralOutputs(reader, attrs)
})
new NeuralNetwork(parent, attributes, miningSchema,
neuralInputs, neuralLayers.result(), neuralOutputs,
output, targets, localTransformations, modelStats, modelExplanation, modelVerification, extensions.toIndexedSeq)
}
private def makeNeuralInputs(reader: XMLEventReader, attrs: XmlAttrs): NeuralInputs = makeElem(reader, attrs, new ElemBuilder[NeuralInputs] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): NeuralInputs = {
val numberOfInputs = attrs.getInt(AttrTags.NUMBER_OF_INPUTS)
val neuralInputs = makeElems(reader, ElemTags.NEURAL_INPUTS, ElemTags.NEURAL_INPUT, new ElemBuilder[NeuralInput] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): NeuralInput = {
val id = attrs(AttrTags.ID)
val derivedField = makeElem(reader, ElemTags.NEURAL_INPUT, ElemTags.DERIVED_FIELD, new ElemBuilder[DerivedField] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): DerivedField = makeDerivedField(reader, attrs)
})
new NeuralInput(id, derivedField.get)
}
})
new NeuralInputs(neuralInputs, numberOfInputs)
}
})
private def makeNeuralLayer(reader: XMLEventReader, attrs: XmlAttrs): NeuralLayer = makeElem(reader, attrs, new ElemBuilder[NeuralLayer] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): NeuralLayer = {
val numberOfNeurons = attrs.getInt(AttrTags.NUMBER_OF_NEURONS)
val activationFunction = attrs.get(AttrTags.ACTIVATION_FUNCTION).map(ActivationFunction.withName(_))
val threshold = attrs.getDouble(AttrTags.THRESHOLD)
val width = attrs.getDouble(AttrTags.WIDTH)
val altitude = attrs.getDouble(AttrTags.ALTITUDE)
val normalizationMethod = attrs.get(AttrTags.NORMALIZATION_METHOD).map(NNNormalizationMethod.withName(_))
val neurons = makeElems(reader, ElemTags.NEURAL_LAYER, ElemTags.NEURON, new ElemBuilder[Neuron] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): Neuron = {
val id = attrs(AttrTags.ID)
val bias = attrs.getDouble(AttrTags.BIAS)
val width = attrs.getDouble(AttrTags.WIDTH)
val altitude = attrs.getDouble(AttrTags.ALTITUDE)
val cons = makeElems(reader, ElemTags.NEURON, ElemTags.CON, new ElemBuilder[Con] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): Con = {
val from = attrs(AttrTags.FROM)
val weight = attrs.double(AttrTags.WEIGHT)
new Con(from, weight)
}
})
new Neuron(cons, id, bias, width, altitude)
}
})
new NeuralLayer(neurons, numberOfNeurons, activationFunction, threshold, width, altitude, normalizationMethod)
}
})
private def makeNeuralOutputs(reader: XMLEventReader, attrs: XmlAttrs): NeuralOutputs = makeElem(reader, attrs, new ElemBuilder[NeuralOutputs] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): NeuralOutputs = {
val numberOfOutputs = attrs.getInt(AttrTags.NUMBER_OF_OUTPUTS)
val neuralOutputs = makeElems(reader, ElemTags.NEURAL_OUTPUTS, ElemTags.NEURAL_OUTPUT, new ElemBuilder[NeuralOutput] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): NeuralOutput = {
val outputNeuron = attrs(AttrTags.OUTPUT_NEURON)
val derivedField = makeElem(reader, ElemTags.NEURAL_OUTPUT, ElemTags.DERIVED_FIELD, new ElemBuilder[DerivedField] {
override def build(reader: XMLEventReader, attrs: XmlAttrs): DerivedField = makeDerivedField(reader, attrs)
})
new NeuralOutput(outputNeuron, derivedField.get)
}
})
new NeuralOutputs(neuralOutputs, numberOfOutputs)
}
})
override def makeAttributes(attrs: XmlAttrs): NeuralNetworkAttributes = {
val attributes = super.makeAttributes(attrs)
new NeuralNetworkAttributes(
functionName = attributes.functionName,
modelName = attributes.modelName,
algorithmName = attributes.algorithmName,
isScorable = attributes.isScorable,
activationFunction = ActivationFunction.withName(attrs(AttrTags.ACTIVATION_FUNCTION)),
normalizationMethod = attrs.get(AttrTags.NORMALIZATION_METHOD).map(x => NNNormalizationMethod.withName(x)).getOrElse(NNNormalizationMethod.none),
threshold = attrs.getDouble(AttrTags.THRESHOLD, 0.0),
width = attrs.getDouble(AttrTags.WIDTH),
altitude = attrs.getDouble(AttrTags.ALTITUDE, 1.0),
numberOfLayers = attrs.getInt(AttrTags.NUMBER_OF_LAYERS)
)
}
/** Name of the builder. */
override def name: String = ElemTags.NEURAL_NETWORK
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy