org.powertac.householdcustomer.configurations.Gaussian Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of household-customer Show documentation
Show all versions of household-customer Show documentation
Bottom-up model of a household energy customer
/*************************************************************************
* Compilation: javac Gaussian.java Execution: java Gaussian x mu sigma
*
* Function to compute the Gaussian pdf (probability density function) and the
* Gaussian cdf (cumulative density function)
*
* % java Gaussian 820 1019 209 0.17050966869132111
*
* % java Gaussian 1500 1019 209 0.9893164837383883
*
* % java Gaussian 1500 1025 231 0.9801220907365489
*
* The approximation is accurate to absolute error less than 8 * 10^(-16).
* Reference: Evaluating the Normal Distribution by George Marsaglia.
* http://www.jstatsoft.org/v11/a04/paper
*
*************************************************************************/
package org.powertac.householdcustomer.configurations;
public class Gaussian
{
// return phi(x) = standard Gaussian pdf
public static double phi (double x)
{
return Math.exp(-x * x / 2) / Math.sqrt(2 * Math.PI);
}
// return phi(x, mu, signma) = Gaussian pdf with mean mu and stddev sigma
public static double phi (double x, double mu, double sigma)
{
return phi((x - mu) / sigma) / sigma;
}
// return Phi(z) = standard Gaussian cdf using Taylor approximation
public static double Phi (double z)
{
if (z < -8.0)
return 0.0;
if (z > 8.0)
return 1.0;
double sum = 0.0, term = z;
for (int i = 3; sum + term != sum; i += 2) {
sum = sum + term;
term = term * z * z / i;
}
return 0.5 + sum * phi(z);
}
// return Phi(z, mu, sigma) = Gaussian cdf with mean mu and stddev sigma
public static double Phi (double z, double mu, double sigma)
{
return Phi((z - mu) / sigma);
}
// Compute z such that Phi(z) = y via bisection search
public static double PhiInverse (double y)
{
return PhiInverse(y, .00000001, -8, 8);
}
// bisection search
private static double PhiInverse (double y, double delta, double lo, double hi)
{
double mid = lo + (hi - lo) / 2;
if (hi - lo < delta)
return mid;
if (Phi(mid) > y)
return PhiInverse(y, delta, lo, mid);
else
return PhiInverse(y, delta, mid, hi);
}
// test client
public static void main (String[] args)
{
double z = Double.parseDouble(args[0]);
double mu = Double.parseDouble(args[1]);
double sigma = Double.parseDouble(args[2]);
System.out.println(Phi(z, mu, sigma));
double y = Phi(z);
System.out.println(PhiInverse(y));
}
}