Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
processing.data.FloatList Maven / Gradle / Ivy
package processing.data;
import java.io.File;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Iterator;
import java.util.Random;
import processing.core.PApplet;
/**
* Helper class for a list of floats. Lists are designed to have some of the
* features of ArrayLists, but to maintain the simplicity and efficiency of
* working with arrays.
*
* Functions like sort() and shuffle() always act on the list itself. To get
* a sorted copy, use list.copy().sort().
*
* @webref data:composite
* @see IntList
* @see StringList
*/
public class FloatList implements Iterable {
int count;
float[] data;
public FloatList() {
data = new float[10];
}
/**
* @nowebref
*/
public FloatList(int length) {
data = new float[length];
}
/**
* @nowebref
*/
public FloatList(float[] list) {
count = list.length;
data = new float[count];
System.arraycopy(list, 0, data, 0, count);
}
/**
* Construct an FloatList from an iterable pile of objects.
* For instance, a float array, an array of strings, who knows).
* Un-parseable or null values will be set to NaN.
* @nowebref
*/
public FloatList(Iterable iter) {
this(10);
for (Object o : iter) {
if (o == null) {
append(Float.NaN);
} else if (o instanceof Number) {
append(((Number) o).floatValue());
} else {
append(PApplet.parseFloat(o.toString().trim()));
}
}
crop();
}
/**
* Construct an FloatList from a random pile of objects.
* Un-parseable or null values will be set to NaN.
*/
public FloatList(Object... items) {
// nuts, no good way to pass missingValue to this fn (varargs must be last)
final float missingValue = Float.NaN;
count = items.length;
data = new float[count];
int index = 0;
for (Object o : items) {
float value = missingValue;
if (o != null) {
if (o instanceof Number) {
value = ((Number) o).floatValue();
} else {
value = PApplet.parseFloat(o.toString().trim(), missingValue);
}
}
data[index++] = value;
}
}
/**
* Improve efficiency by removing allocated but unused entries from the
* internal array used to store the data. Set to private, though it could
* be useful to have this public if lists are frequently making drastic
* size changes (from very large to very small).
*/
private void crop() {
if (count != data.length) {
data = PApplet.subset(data, 0, count);
}
}
/**
* Get the length of the list.
*
* @webref floatlist:method
* @brief Get the length of the list
*/
public int size() {
return count;
}
public void resize(int length) {
if (length > data.length) {
float[] temp = new float[length];
System.arraycopy(data, 0, temp, 0, count);
data = temp;
} else if (length > count) {
Arrays.fill(data, count, length, 0);
}
count = length;
}
/**
* Remove all entries from the list.
*
* @webref floatlist:method
* @brief Remove all entries from the list
*/
public void clear() {
count = 0;
}
/**
* Get an entry at a particular index.
*
* @webref floatlist:method
* @brief Get an entry at a particular index
*/
public float get(int index) {
if (index >= count) {
throw new ArrayIndexOutOfBoundsException(index);
}
return data[index];
}
/**
* Set the entry at a particular index. If the index is past the length of
* the list, it'll expand the list to accommodate, and fill the intermediate
* entries with 0s.
*
* @webref floatlist:method
* @brief Set the entry at a particular index
*/
public void set(int index, float what) {
if (index >= count) {
data = PApplet.expand(data, index+1);
for (int i = count; i < index; i++) {
data[i] = 0;
}
count = index+1;
}
data[index] = what;
}
/** Just an alias for append(), but matches pop() */
public void push(float value) {
append(value);
}
public float pop() {
if (count == 0) {
throw new RuntimeException("Can't call pop() on an empty list");
}
float value = get(count-1);
count--;
return value;
}
/**
* Remove an element from the specified index.
*
* @webref floatlist:method
* @brief Remove an element from the specified index
*/
public float remove(int index) {
if (index < 0 || index >= count) {
throw new ArrayIndexOutOfBoundsException(index);
}
float entry = data[index];
// int[] outgoing = new int[count - 1];
// System.arraycopy(data, 0, outgoing, 0, index);
// count--;
// System.arraycopy(data, index + 1, outgoing, 0, count - index);
// data = outgoing;
// For most cases, this actually appears to be faster
// than arraycopy() on an array copying into itself.
for (int i = index; i < count-1; i++) {
data[i] = data[i+1];
}
count--;
return entry;
}
// Remove the first instance of a particular value,
// and return the index at which it was found.
public int removeValue(int value) {
int index = index(value);
if (index != -1) {
remove(index);
return index;
}
return -1;
}
// Remove all instances of a particular value,
// and return the number of values found and removed
public int removeValues(int value) {
int ii = 0;
if (Float.isNaN(value)) {
for (int i = 0; i < count; i++) {
if (!Float.isNaN(data[i])) {
data[ii++] = data[i];
}
}
} else {
for (int i = 0; i < count; i++) {
if (data[i] != value) {
data[ii++] = data[i];
}
}
}
int removed = count - ii;
count = ii;
return removed;
}
/** Replace the first instance of a particular value */
public boolean replaceValue(float value, float newValue) {
if (Float.isNaN(value)) {
for (int i = 0; i < count; i++) {
if (Float.isNaN(data[i])) {
data[i] = newValue;
return true;
}
}
} else {
int index = index(value);
if (index != -1) {
data[index] = newValue;
return true;
}
}
return false;
}
/** Replace all instances of a particular value */
public boolean replaceValues(float value, float newValue) {
boolean changed = false;
if (Float.isNaN(value)) {
for (int i = 0; i < count; i++) {
if (Float.isNaN(data[i])) {
data[i] = newValue;
changed = true;
}
}
} else {
for (int i = 0; i < count; i++) {
if (data[i] == value) {
data[i] = newValue;
changed = true;
}
}
}
return changed;
}
/**
* Add a new entry to the list.
*
* @webref floatlist:method
* @brief Add a new entry to the list
*/
public void append(float value) {
if (count == data.length) {
data = PApplet.expand(data);
}
data[count++] = value;
}
public void append(float[] values) {
for (float v : values) {
append(v);
}
}
public void append(FloatList list) {
for (float v : list.values()) { // will concat the list...
append(v);
}
}
/** Add this value, but only if it's not already in the list. */
public void appendUnique(float value) {
if (!hasValue(value)) {
append(value);
}
}
// public void insert(int index, int value) {
// if (index+1 > count) {
// if (index+1 < data.length) {
// }
// }
// if (index >= data.length) {
// data = PApplet.expand(data, index+1);
// data[index] = value;
// count = index+1;
//
// } else if (count == data.length) {
// if (index >= count) {
// //int[] temp = new int[count << 1];
// System.arraycopy(data, 0, temp, 0, index);
// temp[index] = value;
// System.arraycopy(data, index, temp, index+1, count - index);
// data = temp;
//
// } else {
// // data[] has room to grow
// // for() loop believed to be faster than System.arraycopy over itself
// for (int i = count; i > index; --i) {
// data[i] = data[i-1];
// }
// data[index] = value;
// count++;
// }
// }
public void insert(int index, float value) {
insert(index, new float[] { value });
}
// same as splice
public void insert(int index, float[] values) {
if (index < 0) {
throw new IllegalArgumentException("insert() index cannot be negative: it was " + index);
}
if (index >= data.length) {
throw new IllegalArgumentException("insert() index " + index + " is past the end of this list");
}
float[] temp = new float[count + values.length];
// Copy the old values, but not more than already exist
System.arraycopy(data, 0, temp, 0, Math.min(count, index));
// Copy the new values into the proper place
System.arraycopy(values, 0, temp, index, values.length);
// if (index < count) {
// The index was inside count, so it's a true splice/insert
System.arraycopy(data, index, temp, index+values.length, count - index);
count = count + values.length;
// } else {
// // The index was past 'count', so the new count is weirder
// count = index + values.length;
// }
data = temp;
}
public void insert(int index, FloatList list) {
insert(index, list.values());
}
// below are aborted attempts at more optimized versions of the code
// that are harder to read and debug...
// if (index + values.length >= count) {
// // We're past the current 'count', check to see if we're still allocated
// // index 9, data.length = 10, values.length = 1
// if (index + values.length < data.length) {
// // There's still room for these entries, even though it's past 'count'.
// // First clear out the entries leading up to it, however.
// for (int i = count; i < index; i++) {
// data[i] = 0;
// }
// data[index] =
// }
// if (index >= data.length) {
// int length = index + values.length;
// int[] temp = new int[length];
// System.arraycopy(data, 0, temp, 0, count);
// System.arraycopy(values, 0, temp, index, values.length);
// data = temp;
// count = data.length;
// } else {
//
// }
//
// } else if (count == data.length) {
// int[] temp = new int[count << 1];
// System.arraycopy(data, 0, temp, 0, index);
// temp[index] = value;
// System.arraycopy(data, index, temp, index+1, count - index);
// data = temp;
//
// } else {
// // data[] has room to grow
// // for() loop believed to be faster than System.arraycopy over itself
// for (int i = count; i > index; --i) {
// data[i] = data[i-1];
// }
// data[index] = value;
// count++;
// }
/** Return the first index of a particular value. */
public int index(float what) {
/*
if (indexCache != null) {
try {
return indexCache.get(what);
} catch (Exception e) { // not there
return -1;
}
}
*/
for (int i = 0; i < count; i++) {
if (data[i] == what) {
return i;
}
}
return -1;
}
/**
* @webref floatlist:method
* @brief Check if a number is a part of the list
*/
public boolean hasValue(float value) {
if (Float.isNaN(value)) {
for (int i = 0; i < count; i++) {
if (Float.isNaN(data[i])) {
return true;
}
}
} else {
for (int i = 0; i < count; i++) {
if (data[i] == value) {
return true;
}
}
}
return false;
}
private void boundsProblem(int index, String method) {
final String msg = String.format("The list size is %d. " +
"You cannot %s() to element %d.", count, method, index);
throw new ArrayIndexOutOfBoundsException(msg);
}
/**
* @webref floatlist:method
* @brief Add to a value
*/
public void add(int index, float amount) {
if (index < count) {
data[index] += amount;
} else {
boundsProblem(index, "add");
}
}
/**
* @webref floatlist:method
* @brief Subtract from a value
*/
public void sub(int index, float amount) {
if (index < count) {
data[index] -= amount;
} else {
boundsProblem(index, "sub");
}
}
/**
* @webref floatlist:method
* @brief Multiply a value
*/
public void mult(int index, float amount) {
if (index < count) {
data[index] *= amount;
} else {
boundsProblem(index, "mult");
}
}
/**
* @webref floatlist:method
* @brief Divide a value
*/
public void div(int index, float amount) {
if (index < count) {
data[index] /= amount;
} else {
boundsProblem(index, "div");
}
}
private void checkMinMax(String functionName) {
if (count == 0) {
String msg =
String.format("Cannot use %s() on an empty %s.",
functionName, getClass().getSimpleName());
throw new RuntimeException(msg);
}
}
/**
* @webref floatlist:method
* @brief Return the smallest value
*/
public float min() {
checkMinMax("min");
int index = minIndex();
return index == -1 ? Float.NaN : data[index];
}
public int minIndex() {
checkMinMax("minIndex");
float m = Float.NaN;
int mi = -1;
for (int i = 0; i < count; i++) {
// find one good value to start
if (data[i] == data[i]) {
m = data[i];
mi = i;
// calculate the rest
for (int j = i+1; j < count; j++) {
float d = data[j];
if (!Float.isNaN(d) && (d < m)) {
m = data[j];
mi = j;
}
}
break;
}
}
return mi;
}
/**
* @webref floatlist:method
* @brief Return the largest value
*/
public float max() {
checkMinMax("max");
int index = maxIndex();
return index == -1 ? Float.NaN : data[index];
}
public int maxIndex() {
checkMinMax("maxIndex");
float m = Float.NaN;
int mi = -1;
for (int i = 0; i < count; i++) {
// find one good value to start
if (data[i] == data[i]) {
m = data[i];
mi = i;
// calculate the rest
for (int j = i+1; j < count; j++) {
float d = data[j];
if (!Float.isNaN(d) && (d > m)) {
m = data[j];
mi = j;
}
}
break;
}
}
return mi;
}
public float sum() {
double amount = sumDouble();
if (amount > Float.MAX_VALUE) {
throw new RuntimeException("sum() exceeds " + Float.MAX_VALUE + ", use sumDouble()");
}
if (amount < -Float.MAX_VALUE) {
throw new RuntimeException("sum() lower than " + -Float.MAX_VALUE + ", use sumDouble()");
}
return (float) amount;
}
public double sumDouble() {
double sum = 0;
for (int i = 0; i < count; i++) {
sum += data[i];
}
return sum;
}
/**
* Sorts the array in place.
*
* @webref floatlist:method
* @brief Sorts an array, lowest to highest
*/
public void sort() {
Arrays.sort(data, 0, count);
}
/**
* Reverse sort, orders values from highest to lowest
*
* @webref floatlist:method
* @brief Reverse sort, orders values from highest to lowest
*/
public void sortReverse() {
new Sort() {
@Override
public int size() {
// if empty, don't even mess with the NaN check, it'll AIOOBE
if (count == 0) {
return 0;
}
// move NaN values to the end of the list and don't sort them
int right = count - 1;
while (data[right] != data[right]) {
right--;
if (right == -1) { // all values are NaN
return 0;
}
}
for (int i = right; i >= 0; --i) {
float v = data[i];
if (v != v) {
data[i] = data[right];
data[right] = v;
--right;
}
}
return right + 1;
}
@Override
public int compare(int a, int b) {
float diff = data[b] - data[a];
return diff == 0 ? 0 : (diff < 0 ? -1 : 1);
}
@Override
public void swap(int a, int b) {
float temp = data[a];
data[a] = data[b];
data[b] = temp;
}
}.run();
}
// use insert()
// public void splice(int index, int value) {
// }
// public void subset(int start) {
// subset(start, count - start);
// }
// public void subset(int start, int num) {
// for (int i = 0; i < num; i++) {
// data[i] = data[i+start];
// }
// count = num;
// }
/**
* @webref floatlist:method
* @brief Reverse the order of the list elements
*/
public void reverse() {
int ii = count - 1;
for (int i = 0; i < count/2; i++) {
float t = data[i];
data[i] = data[ii];
data[ii] = t;
--ii;
}
}
/**
* Randomize the order of the list elements. Note that this does not
* obey the randomSeed() function in PApplet.
*
* @webref floatlist:method
* @brief Randomize the order of the list elements
*/
public void shuffle() {
Random r = new Random();
int num = count;
while (num > 1) {
int value = r.nextInt(num);
num--;
float temp = data[num];
data[num] = data[value];
data[value] = temp;
}
}
/**
* Randomize the list order using the random() function from the specified
* sketch, allowing shuffle() to use its current randomSeed() setting.
*/
public void shuffle(PApplet sketch) {
int num = count;
while (num > 1) {
int value = (int) sketch.random(num);
num--;
float temp = data[num];
data[num] = data[value];
data[value] = temp;
}
}
public FloatList copy() {
FloatList outgoing = new FloatList(data);
outgoing.count = count;
return outgoing;
}
/**
* Returns the actual array being used to store the data. For advanced users,
* this is the fastest way to access a large list. Suitable for iterating
* with a for() loop, but modifying the list will have terrible consequences.
*/
public float[] values() {
crop();
return data;
}
/** Implemented this way so that we can use a FloatList in a for loop. */
@Override
public Iterator iterator() {
// }
//
//
// public Iterator valueIterator() {
return new Iterator() {
int index = -1;
public void remove() {
FloatList.this.remove(index);
index--;
}
public Float next() {
return data[++index];
}
public boolean hasNext() {
return index+1 < count;
}
};
}
/**
* Create a new array with a copy of all the values.
* @return an array sized by the length of the list with each of the values.
* @webref floatlist:method
* @brief Create a new array with a copy of all the values
*/
public float[] array() {
return array(null);
}
/**
* Copy values into the specified array. If the specified array is null or
* not the same size, a new array will be allocated.
* @param array
*/
public float[] array(float[] array) {
if (array == null || array.length != count) {
array = new float[count];
}
System.arraycopy(data, 0, array, 0, count);
return array;
}
/**
* Returns a normalized version of this array. Called getPercent() for
* consistency with the Dict classes. It's a getter method because it needs
* to returns a new list (because IntList/Dict can't do percentages or
* normalization in place on int values).
*/
public FloatList getPercent() {
double sum = 0;
for (float value : array()) {
sum += value;
}
FloatList outgoing = new FloatList(count);
for (int i = 0; i < count; i++) {
double percent = data[i] / sum;
outgoing.set(i, (float) percent);
}
return outgoing;
}
public FloatList getSubset(int start) {
return getSubset(start, count - start);
}
public FloatList getSubset(int start, int num) {
float[] subset = new float[num];
System.arraycopy(data, start, subset, 0, num);
return new FloatList(subset);
}
public String join(String separator) {
if (count == 0) {
return "";
}
StringBuilder sb = new StringBuilder();
sb.append(data[0]);
for (int i = 1; i < count; i++) {
sb.append(separator);
sb.append(data[i]);
}
return sb.toString();
}
public void print() {
for (int i = 0; i < count; i++) {
System.out.format("[%d] %f%n", i, data[i]);
}
}
/**
* Save tab-delimited entries to a file (TSV format, UTF-8 encoding)
*/
public void save(File file) {
PrintWriter writer = PApplet.createWriter(file);
write(writer);
writer.close();
}
/**
* Write entries to a PrintWriter, one per line
*/
public void write(PrintWriter writer) {
for (int i = 0; i < count; i++) {
writer.println(data[i]);
}
writer.flush();
}
/**
* Return this dictionary as a String in JSON format.
*/
public String toJSON() {
return "[ " + join(", ") + " ]";
}
@Override
public String toString() {
return getClass().getSimpleName() + " size=" + size() + " " + toJSON();
}
}