All Downloads are FREE. Search and download functionalities are using the official Maven repository.

processing.core.PMatrix3D Maven / Gradle / Ivy

The newest version!
/* -*- mode: java; c-basic-offset: 2; indent-tabs-mode: nil -*- */

/*
  Part of the Processing project - http://processing.org

  Copyright (c) 2005-12 Ben Fry and Casey Reas

  This library is free software; you can redistribute it and/or
  modify it under the terms of the GNU Lesser General Public
  License version 2.1 as published by the Free Software Foundation.

  This library is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  Lesser General Public License for more details.

  You should have received a copy of the GNU Lesser General
  Public License along with this library; if not, write to the
  Free Software Foundation, Inc., 59 Temple Place, Suite 330,
  Boston, MA  02111-1307  USA
*/

package processing.core;


/**
 * 4x4 matrix implementation.
 * Matrices are used to describe a transformation; see {@link PMatrix} for a
 * general description. This matrix looks like the following when multiplying
 * a vector (x, y, z, w) in {@code mult()}.
 * 
 * [m00 m01 m02 m03][x]   [m00*x + m01*y + m02*z + m03*w]   [x']
 * [m10 m11 m12 m13][y] = [m10*x + m11*y + m12*z + m13*w] = [y']
 * [m20 m21 m22 m23][z]   [m20*x + m21*y + m22*z + m23*w]   [z']
 * [m30 m31 m32 m33][w]   [m30*x + m31*y + m32*z + m33*w]   [w']
* (x', y', z', w') is returned. The values in the matrix determine the * transformation. They are modified by the various transformation functions. * * To transform 3D coordinates, w is set to 1, amd w' is made to be 1 by * setting the bottom row of the matrix to [0 0 0 1]. The * resulting point is then (x', y', z'). */ public final class PMatrix3D implements PMatrix /*, PConstants*/ { public float m00, m01, m02, m03; public float m10, m11, m12, m13; public float m20, m21, m22, m23; public float m30, m31, m32, m33; // locally allocated version to avoid creating new memory protected PMatrix3D inverseCopy; public PMatrix3D() { reset(); } public PMatrix3D(float m00, float m01, float m02, float m10, float m11, float m12) { set(m00, m01, m02, 0, m10, m11, m12, 0, 0, 0, 1, 0, 0, 0, 0, 1); } public PMatrix3D(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33) { set(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33); } public PMatrix3D(PMatrix matrix) { set(matrix); } public void reset() { set(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); } /** * Returns a copy of this PMatrix. */ public PMatrix3D get() { PMatrix3D outgoing = new PMatrix3D(); outgoing.set(this); return outgoing; } /** * Copies the matrix contents into a 16 entry float array. * If target is null (or not the correct size), a new array will be created. */ public float[] get(float[] target) { if ((target == null) || (target.length != 16)) { target = new float[16]; } target[0] = m00; target[1] = m01; target[2] = m02; target[3] = m03; target[4] = m10; target[5] = m11; target[6] = m12; target[7] = m13; target[8] = m20; target[9] = m21; target[10] = m22; target[11] = m23; target[12] = m30; target[13] = m31; target[14] = m32; target[15] = m33; return target; } public void set(PMatrix matrix) { if (matrix instanceof PMatrix3D) { PMatrix3D src = (PMatrix3D) matrix; set(src.m00, src.m01, src.m02, src.m03, src.m10, src.m11, src.m12, src.m13, src.m20, src.m21, src.m22, src.m23, src.m30, src.m31, src.m32, src.m33); } else { PMatrix2D src = (PMatrix2D) matrix; set(src.m00, src.m01, 0, src.m02, src.m10, src.m11, 0, src.m12, 0, 0, 1, 0, 0, 0, 0, 1); } } public void set(float[] source) { if (source.length == 6) { set(source[0], source[1], source[2], source[3], source[4], source[5]); } else if (source.length == 16) { m00 = source[0]; m01 = source[1]; m02 = source[2]; m03 = source[3]; m10 = source[4]; m11 = source[5]; m12 = source[6]; m13 = source[7]; m20 = source[8]; m21 = source[9]; m22 = source[10]; m23 = source[11]; m30 = source[12]; m31 = source[13]; m32 = source[14]; m33 = source[15]; } } public void set(float m00, float m01, float m02, float m10, float m11, float m12) { set(m00, m01, 0, m02, m10, m11, 0, m12, 0, 0, 1, 0, 0, 0, 0, 1); } public void set(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33) { this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03; this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13; this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23; this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33; } public void translate(float tx, float ty) { translate(tx, ty, 0); } // public void invTranslate(float tx, float ty) { // invTranslate(tx, ty, 0); // } public void translate(float tx, float ty, float tz) { m03 += tx*m00 + ty*m01 + tz*m02; m13 += tx*m10 + ty*m11 + tz*m12; m23 += tx*m20 + ty*m21 + tz*m22; m33 += tx*m30 + ty*m31 + tz*m32; } public void rotate(float angle) { rotateZ(angle); } public void rotateX(float angle) { float c = cos(angle); float s = sin(angle); apply(1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1); } public void rotateY(float angle) { float c = cos(angle); float s = sin(angle); apply(c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1); } public void rotateZ(float angle) { float c = cos(angle); float s = sin(angle); apply(c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); } public void rotate(float angle, float v0, float v1, float v2) { float norm2 = v0 * v0 + v1 * v1 + v2 * v2; if (norm2 < PConstants.EPSILON) { // The vector is zero, cannot apply rotation. return; } if (Math.abs(norm2 - 1) > PConstants.EPSILON) { // The rotation vector is not normalized. float norm = PApplet.sqrt(norm2); v0 /= norm; v1 /= norm; v2 /= norm; } float c = cos(angle); float s = sin(angle); float t = 1.0f - c; apply((t*v0*v0) + c, (t*v0*v1) - (s*v2), (t*v0*v2) + (s*v1), 0, (t*v0*v1) + (s*v2), (t*v1*v1) + c, (t*v1*v2) - (s*v0), 0, (t*v0*v2) - (s*v1), (t*v1*v2) + (s*v0), (t*v2*v2) + c, 0, 0, 0, 0, 1); } public void scale(float s) { //apply(s, 0, 0, 0, 0, s, 0, 0, 0, 0, s, 0, 0, 0, 0, 1); scale(s, s, s); } public void scale(float sx, float sy) { //apply(sx, 0, 0, 0, 0, sy, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); scale(sx, sy, 1); } public void scale(float x, float y, float z) { //apply(x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1); m00 *= x; m01 *= y; m02 *= z; m10 *= x; m11 *= y; m12 *= z; m20 *= x; m21 *= y; m22 *= z; m30 *= x; m31 *= y; m32 *= z; } public void shearX(float angle) { float t = (float) Math.tan(angle); apply(1, t, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); } public void shearY(float angle) { float t = (float) Math.tan(angle); apply(1, 0, 0, 0, t, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); } public void apply(PMatrix source) { if (source instanceof PMatrix2D) { apply((PMatrix2D) source); } else if (source instanceof PMatrix3D) { apply((PMatrix3D) source); } } public void apply(PMatrix2D source) { apply(source.m00, source.m01, 0, source.m02, source.m10, source.m11, 0, source.m12, 0, 0, 1, 0, 0, 0, 0, 1); } public void apply(PMatrix3D source) { apply(source.m00, source.m01, source.m02, source.m03, source.m10, source.m11, source.m12, source.m13, source.m20, source.m21, source.m22, source.m23, source.m30, source.m31, source.m32, source.m33); } public void apply(float n00, float n01, float n02, float n10, float n11, float n12) { apply(n00, n01, 0, n02, n10, n11, 0, n12, 0, 0, 1, 0, 0, 0, 0, 1); } public void apply(float n00, float n01, float n02, float n03, float n10, float n11, float n12, float n13, float n20, float n21, float n22, float n23, float n30, float n31, float n32, float n33) { float r00 = m00*n00 + m01*n10 + m02*n20 + m03*n30; float r01 = m00*n01 + m01*n11 + m02*n21 + m03*n31; float r02 = m00*n02 + m01*n12 + m02*n22 + m03*n32; float r03 = m00*n03 + m01*n13 + m02*n23 + m03*n33; float r10 = m10*n00 + m11*n10 + m12*n20 + m13*n30; float r11 = m10*n01 + m11*n11 + m12*n21 + m13*n31; float r12 = m10*n02 + m11*n12 + m12*n22 + m13*n32; float r13 = m10*n03 + m11*n13 + m12*n23 + m13*n33; float r20 = m20*n00 + m21*n10 + m22*n20 + m23*n30; float r21 = m20*n01 + m21*n11 + m22*n21 + m23*n31; float r22 = m20*n02 + m21*n12 + m22*n22 + m23*n32; float r23 = m20*n03 + m21*n13 + m22*n23 + m23*n33; float r30 = m30*n00 + m31*n10 + m32*n20 + m33*n30; float r31 = m30*n01 + m31*n11 + m32*n21 + m33*n31; float r32 = m30*n02 + m31*n12 + m32*n22 + m33*n32; float r33 = m30*n03 + m31*n13 + m32*n23 + m33*n33; m00 = r00; m01 = r01; m02 = r02; m03 = r03; m10 = r10; m11 = r11; m12 = r12; m13 = r13; m20 = r20; m21 = r21; m22 = r22; m23 = r23; m30 = r30; m31 = r31; m32 = r32; m33 = r33; } /** * Apply the 3D equivalent of the 2D matrix supplied to the left of this one. */ public void preApply(PMatrix2D left) { preApply(left.m00, left.m01, 0, left.m02, left.m10, left.m11, 0, left.m12, 0, 0, 1, 0, 0, 0, 0, 1); } /** * Apply another matrix to the left of this one. */ public void preApply(PMatrix source) { if (source instanceof PMatrix2D) { preApply((PMatrix2D) source); } else if (source instanceof PMatrix3D) { preApply((PMatrix3D) source); } } /** * Apply another matrix to the left of this one. */ public void preApply(PMatrix3D left) { preApply(left.m00, left.m01, left.m02, left.m03, left.m10, left.m11, left.m12, left.m13, left.m20, left.m21, left.m22, left.m23, left.m30, left.m31, left.m32, left.m33); } /** * Apply the 3D equivalent of the 2D matrix supplied to the left of this one. */ public void preApply(float n00, float n01, float n02, float n10, float n11, float n12) { preApply(n00, n01, 0, n02, n10, n11, 0, n12, 0, 0, 1, 0, 0, 0, 0, 1); } /** * Apply another matrix to the left of this one. */ public void preApply(float n00, float n01, float n02, float n03, float n10, float n11, float n12, float n13, float n20, float n21, float n22, float n23, float n30, float n31, float n32, float n33) { float r00 = n00*m00 + n01*m10 + n02*m20 + n03*m30; float r01 = n00*m01 + n01*m11 + n02*m21 + n03*m31; float r02 = n00*m02 + n01*m12 + n02*m22 + n03*m32; float r03 = n00*m03 + n01*m13 + n02*m23 + n03*m33; float r10 = n10*m00 + n11*m10 + n12*m20 + n13*m30; float r11 = n10*m01 + n11*m11 + n12*m21 + n13*m31; float r12 = n10*m02 + n11*m12 + n12*m22 + n13*m32; float r13 = n10*m03 + n11*m13 + n12*m23 + n13*m33; float r20 = n20*m00 + n21*m10 + n22*m20 + n23*m30; float r21 = n20*m01 + n21*m11 + n22*m21 + n23*m31; float r22 = n20*m02 + n21*m12 + n22*m22 + n23*m32; float r23 = n20*m03 + n21*m13 + n22*m23 + n23*m33; float r30 = n30*m00 + n31*m10 + n32*m20 + n33*m30; float r31 = n30*m01 + n31*m11 + n32*m21 + n33*m31; float r32 = n30*m02 + n31*m12 + n32*m22 + n33*m32; float r33 = n30*m03 + n31*m13 + n32*m23 + n33*m33; m00 = r00; m01 = r01; m02 = r02; m03 = r03; m10 = r10; m11 = r11; m12 = r12; m13 = r13; m20 = r20; m21 = r21; m22 = r22; m23 = r23; m30 = r30; m31 = r31; m32 = r32; m33 = r33; } ////////////////////////////////////////////////////////////// /** * Multiply source by this matrix, and return the result. * The result will be stored in target if target is non-null, and target * will then be the matrix returned. This improves performance if you reuse * target, so it's recommended if you call this many times in draw(). */ public PVector mult(PVector source, PVector target) { if (target == null) { target = new PVector(); } target.set(m00*source.x + m01*source.y + m02*source.z + m03, m10*source.x + m11*source.y + m12*source.z + m13, m20*source.x + m21*source.y + m22*source.z + m23); // float tw = m30*source.x + m31*source.y + m32*source.z + m33; // if (tw != 0 && tw != 1) { // target.div(tw); // } return target; } /* public PVector cmult(PVector source, PVector target) { if (target == null) { target = new PVector(); } target.x = m00*source.x + m10*source.y + m20*source.z + m30; target.y = m01*source.x + m11*source.y + m21*source.z + m31; target.z = m02*source.x + m12*source.y + m22*source.z + m32; float tw = m03*source.x + m13*source.y + m23*source.z + m33; if (tw != 0 && tw != 1) { target.div(tw); } return target; } */ /** * Multiply a three or four element vector against this matrix. If out is * null or not length 3 or 4, a new float array (length 3) will be returned. * Supplying and recycling a target array improves performance, so it's * recommended if you call this many times in draw. */ public float[] mult(float[] source, float[] target) { if (target == null || target.length < 3) { target = new float[3]; } if (source == target) { throw new RuntimeException("The source and target vectors used in " + "PMatrix3D.mult() cannot be identical."); } if (target.length == 3) { target[0] = m00*source[0] + m01*source[1] + m02*source[2] + m03; target[1] = m10*source[0] + m11*source[1] + m12*source[2] + m13; target[2] = m20*source[0] + m21*source[1] + m22*source[2] + m23; //float w = m30*source[0] + m31*source[1] + m32*source[2] + m33; //if (w != 0 && w != 1) { // target[0] /= w; target[1] /= w; target[2] /= w; //} } else if (target.length > 3) { target[0] = m00*source[0] + m01*source[1] + m02*source[2] + m03*source[3]; target[1] = m10*source[0] + m11*source[1] + m12*source[2] + m13*source[3]; target[2] = m20*source[0] + m21*source[1] + m22*source[2] + m23*source[3]; target[3] = m30*source[0] + m31*source[1] + m32*source[2] + m33*source[3]; } return target; } /** * Returns the x-coordinate of the result of multiplying the point (x, y) * by this matrix. */ public float multX(float x, float y) { return m00*x + m01*y + m03; } /** * Returns the y-coordinate of the result of multiplying the point (x, y) * by this matrix. */ public float multY(float x, float y) { return m10*x + m11*y + m13; } /** * Returns the x-coordinate of the result of multiplying the point (x, y, z) * by this matrix. */ public float multX(float x, float y, float z) { return m00*x + m01*y + m02*z + m03; } /** * Returns the y-coordinate of the result of multiplying the point (x, y, z) * by this matrix. */ public float multY(float x, float y, float z) { return m10*x + m11*y + m12*z + m13; } /** * Returns the z-coordinate of the result of multiplying the point (x, y, z) * by this matrix. */ public float multZ(float x, float y, float z) { return m20*x + m21*y + m22*z + m23; } /** * Returns the fourth element of the result of multiplying the vector * (x, y, z) by this matrix. (Acts as if w = 1 was supplied.) */ public float multW(float x, float y, float z) { return m30*x + m31*y + m32*z + m33; } /** * Returns the x-coordinate of the result of multiplying the vector * (x, y, z, w) by this matrix. */ public float multX(float x, float y, float z, float w) { return m00*x + m01*y + m02*z + m03*w; } /** * Returns the y-coordinate of the result of multiplying the vector * (x, y, z, w) by this matrix. */ public float multY(float x, float y, float z, float w) { return m10*x + m11*y + m12*z + m13*w; } /** * Returns the z-coordinate of the result of multiplying the vector * (x, y, z, w) by this matrix. */ public float multZ(float x, float y, float z, float w) { return m20*x + m21*y + m22*z + m23*w; } /** * Returns the w-coordinate of the result of multiplying the vector * (x, y, z, w) by this matrix. */ public float multW(float x, float y, float z, float w) { return m30*x + m31*y + m32*z + m33*w; } /** * Transpose this matrix; rows become columns and columns rows. */ public void transpose() { float temp; temp = m01; m01 = m10; m10 = temp; temp = m02; m02 = m20; m20 = temp; temp = m03; m03 = m30; m30 = temp; temp = m12; m12 = m21; m21 = temp; temp = m13; m13 = m31; m31 = temp; temp = m23; m23 = m32; m32 = temp; } /** * Invert this matrix. Will not necessarily succeed, because some matrices * map more than one point to the same image point, and so are irreversible. * @return true if successful */ public boolean invert() { float determinant = determinant(); if (determinant == 0) { return false; } // first row float t00 = determinant3x3(m11, m12, m13, m21, m22, m23, m31, m32, m33); float t01 = -determinant3x3(m10, m12, m13, m20, m22, m23, m30, m32, m33); float t02 = determinant3x3(m10, m11, m13, m20, m21, m23, m30, m31, m33); float t03 = -determinant3x3(m10, m11, m12, m20, m21, m22, m30, m31, m32); // second row float t10 = -determinant3x3(m01, m02, m03, m21, m22, m23, m31, m32, m33); float t11 = determinant3x3(m00, m02, m03, m20, m22, m23, m30, m32, m33); float t12 = -determinant3x3(m00, m01, m03, m20, m21, m23, m30, m31, m33); float t13 = determinant3x3(m00, m01, m02, m20, m21, m22, m30, m31, m32); // third row float t20 = determinant3x3(m01, m02, m03, m11, m12, m13, m31, m32, m33); float t21 = -determinant3x3(m00, m02, m03, m10, m12, m13, m30, m32, m33); float t22 = determinant3x3(m00, m01, m03, m10, m11, m13, m30, m31, m33); float t23 = -determinant3x3(m00, m01, m02, m10, m11, m12, m30, m31, m32); // fourth row float t30 = -determinant3x3(m01, m02, m03, m11, m12, m13, m21, m22, m23); float t31 = determinant3x3(m00, m02, m03, m10, m12, m13, m20, m22, m23); float t32 = -determinant3x3(m00, m01, m03, m10, m11, m13, m20, m21, m23); float t33 = determinant3x3(m00, m01, m02, m10, m11, m12, m20, m21, m22); // transpose and divide by the determinant m00 = t00 / determinant; m01 = t10 / determinant; m02 = t20 / determinant; m03 = t30 / determinant; m10 = t01 / determinant; m11 = t11 / determinant; m12 = t21 / determinant; m13 = t31 / determinant; m20 = t02 / determinant; m21 = t12 / determinant; m22 = t22 / determinant; m23 = t32 / determinant; m30 = t03 / determinant; m31 = t13 / determinant; m32 = t23 / determinant; m33 = t33 / determinant; return true; } /** * Calculate the determinant of a 3x3 matrix. * @return result */ private float determinant3x3(float t00, float t01, float t02, float t10, float t11, float t12, float t20, float t21, float t22) { return (t00 * (t11 * t22 - t12 * t21) + t01 * (t12 * t20 - t10 * t22) + t02 * (t10 * t21 - t11 * t20)); } /** * @return the determinant of the matrix */ public float determinant() { float f = m00 * ((m11 * m22 * m33 + m12 * m23 * m31 + m13 * m21 * m32) - m13 * m22 * m31 - m11 * m23 * m32 - m12 * m21 * m33); f -= m01 * ((m10 * m22 * m33 + m12 * m23 * m30 + m13 * m20 * m32) - m13 * m22 * m30 - m10 * m23 * m32 - m12 * m20 * m33); f += m02 * ((m10 * m21 * m33 + m11 * m23 * m30 + m13 * m20 * m31) - m13 * m21 * m30 - m10 * m23 * m31 - m11 * m20 * m33); f -= m03 * ((m10 * m21 * m32 + m11 * m22 * m30 + m12 * m20 * m31) - m12 * m21 * m30 - m10 * m22 * m31 - m11 * m20 * m32); return f; } ////////////////////////////////////////////////////////////// // REVERSE VERSIONS OF MATRIX OPERATIONS // These functions should not be used, as they will be removed in the future. protected void invTranslate(float tx, float ty, float tz) { preApply(1, 0, 0, -tx, 0, 1, 0, -ty, 0, 0, 1, -tz, 0, 0, 0, 1); } protected void invRotateX(float angle) { float c = cos(-angle); float s = sin(-angle); preApply(1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1); } protected void invRotateY(float angle) { float c = cos(-angle); float s = sin(-angle); preApply(c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1); } protected void invRotateZ(float angle) { float c = cos(-angle); float s = sin(-angle); preApply(c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); } protected void invRotate(float angle, float v0, float v1, float v2) { //TODO should make sure this vector is normalized float c = cos(-angle); float s = sin(-angle); float t = 1.0f - c; preApply((t*v0*v0) + c, (t*v0*v1) - (s*v2), (t*v0*v2) + (s*v1), 0, (t*v0*v1) + (s*v2), (t*v1*v1) + c, (t*v1*v2) - (s*v0), 0, (t*v0*v2) - (s*v1), (t*v1*v2) + (s*v0), (t*v2*v2) + c, 0, 0, 0, 0, 1); } protected void invScale(float x, float y, float z) { preApply(1/x, 0, 0, 0, 0, 1/y, 0, 0, 0, 0, 1/z, 0, 0, 0, 0, 1); } protected boolean invApply(float n00, float n01, float n02, float n03, float n10, float n11, float n12, float n13, float n20, float n21, float n22, float n23, float n30, float n31, float n32, float n33) { if (inverseCopy == null) { inverseCopy = new PMatrix3D(); } inverseCopy.set(n00, n01, n02, n03, n10, n11, n12, n13, n20, n21, n22, n23, n30, n31, n32, n33); if (!inverseCopy.invert()) { return false; } preApply(inverseCopy); return true; } ////////////////////////////////////////////////////////////// public void print() { /* System.out.println(m00 + " " + m01 + " " + m02 + " " + m03 + "\n" + m10 + " " + m11 + " " + m12 + " " + m13 + "\n" + m20 + " " + m21 + " " + m22 + " " + m23 + "\n" + m30 + " " + m31 + " " + m32 + " " + m33 + "\n"); */ int big = (int) Math.abs(max(max(max(max(abs(m00), abs(m01)), max(abs(m02), abs(m03))), max(max(abs(m10), abs(m11)), max(abs(m12), abs(m13)))), max(max(max(abs(m20), abs(m21)), max(abs(m22), abs(m23))), max(max(abs(m30), abs(m31)), max(abs(m32), abs(m33)))))); int digits = 1; if (Float.isNaN(big) || Float.isInfinite(big)) { // avoid infinite loop digits = 5; } else { while ((big /= 10) != 0) digits++; // cheap log() } System.out.println(PApplet.nfs(m00, digits, 4) + " " + PApplet.nfs(m01, digits, 4) + " " + PApplet.nfs(m02, digits, 4) + " " + PApplet.nfs(m03, digits, 4)); System.out.println(PApplet.nfs(m10, digits, 4) + " " + PApplet.nfs(m11, digits, 4) + " " + PApplet.nfs(m12, digits, 4) + " " + PApplet.nfs(m13, digits, 4)); System.out.println(PApplet.nfs(m20, digits, 4) + " " + PApplet.nfs(m21, digits, 4) + " " + PApplet.nfs(m22, digits, 4) + " " + PApplet.nfs(m23, digits, 4)); System.out.println(PApplet.nfs(m30, digits, 4) + " " + PApplet.nfs(m31, digits, 4) + " " + PApplet.nfs(m32, digits, 4) + " " + PApplet.nfs(m33, digits, 4)); System.out.println(); } ////////////////////////////////////////////////////////////// static private final float max(float a, float b) { return (a > b) ? a : b; } static private final float abs(float a) { return (a < 0) ? -a : a; } static private final float sin(float angle) { return (float) Math.sin(angle); } static private final float cos(float angle) { return (float) Math.cos(angle); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy