processing.data.DoubleDict Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of processing-core Show documentation
Show all versions of processing-core Show documentation
Modularized fork of Processing Core libraries.
The newest version!
package processing.data;
import java.io.*;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import processing.core.PApplet;
/**
* A simple table class to use a String as a lookup for an double value.
*
* @nowebref
* @see IntDict
* @see StringDict
*/
public class DoubleDict {
/** Number of elements in the table */
protected int count;
protected String[] keys;
protected double[] values;
/** Internal implementation for faster lookups */
private HashMap indices = new HashMap<>();
public DoubleDict() {
count = 0;
keys = new String[10];
values = new double[10];
}
/**
* Create a new lookup with a specific size. This is more efficient than not
* specifying a size. Use it when you know the rough size of the thing you're creating.
*
* @nowebref
*/
public DoubleDict(int length) {
count = 0;
keys = new String[length];
values = new double[length];
}
/**
* Read a set of entries from a Reader that has each key/value pair on
* a single line, separated by a tab.
*
* @nowebref
*/
public DoubleDict(BufferedReader reader) {
String[] lines = PApplet.loadStrings(reader);
keys = new String[lines.length];
values = new double[lines.length];
for (int i = 0; i < lines.length; i++) {
String[] pieces = PApplet.split(lines[i], '\t');
if (pieces.length == 2) {
keys[count] = pieces[0];
values[count] = PApplet.parseFloat(pieces[1]);
indices.put(pieces[0], count);
count++;
}
}
}
/**
* @nowebref
*/
public DoubleDict(String[] keys, double[] values) {
if (keys.length != values.length) {
throw new IllegalArgumentException("key and value arrays must be the same length");
}
this.keys = keys;
this.values = values;
count = keys.length;
for (int i = 0; i < count; i++) {
indices.put(keys[i], i);
}
}
/**
* Constructor to allow (more intuitive) inline initialization, e.g.:
*
* new FloatDict(new Object[][] {
* { "key1", 1 },
* { "key2", 2 }
* });
*
*/
public DoubleDict(Object[][] pairs) {
count = pairs.length;
this.keys = new String[count];
this.values = new double[count];
for (int i = 0; i < count; i++) {
keys[i] = (String) pairs[i][0];
values[i] = (Float) pairs[i][1];
indices.put(keys[i], i);
}
}
public DoubleDict(Map incoming) {
count = incoming.size();
keys = new String[count];
values = new double[count];
int index = 0;
for (Map.Entry e : incoming.entrySet()) {
keys[index] = e.getKey();
values[index] = e.getValue();
indices.put(keys[index], index);
index++;
}
}
/**
* @webref doubledict:method
* @brief Returns the number of key/value pairs
*/
public int size() {
return count;
}
/**
* Resize the internal data, this can only be used to shrink the list.
* Helpful for situations like sorting and then grabbing the top 50 entries.
*/
public void resize(int length) {
if (length == count) return;
if (length > count) {
throw new IllegalArgumentException("resize() can only be used to shrink the dictionary");
}
if (length < 1) {
throw new IllegalArgumentException("resize(" + length + ") is too small, use 1 or higher");
}
String[] newKeys = new String[length];
double[] newValues = new double[length];
PApplet.arrayCopy(keys, newKeys, length);
PApplet.arrayCopy(values, newValues, length);
keys = newKeys;
values = newValues;
count = length;
resetIndices();
}
/**
* Remove all entries.
*
* @webref doubledict:method
* @brief Remove all entries
*/
public void clear() {
count = 0;
indices = new HashMap<>();
}
private void resetIndices() {
indices = new HashMap<>(count);
for (int i = 0; i < count; i++) {
indices.put(keys[i], i);
}
}
// . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
public class Entry {
public String key;
public double value;
Entry(String key, double value) {
this.key = key;
this.value = value;
}
}
public Iterable entries() {
return new Iterable() {
public Iterator iterator() {
return entryIterator();
}
};
}
public Iterator entryIterator() {
return new Iterator() {
int index = -1;
public void remove() {
removeIndex(index);
index--;
}
public Entry next() {
++index;
Entry e = new Entry(keys[index], values[index]);
return e;
}
public boolean hasNext() {
return index+1 < size();
}
};
}
// . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
public String key(int index) {
return keys[index];
}
protected void crop() {
if (count != keys.length) {
keys = PApplet.subset(keys, 0, count);
values = PApplet.subset(values, 0, count);
}
}
public Iterable keys() {
return new Iterable() {
@Override
public Iterator iterator() {
return keyIterator();
}
};
}
// Use this to iterate when you want to be able to remove elements along the way
public Iterator keyIterator() {
return new Iterator() {
int index = -1;
public void remove() {
removeIndex(index);
index--;
}
public String next() {
return key(++index);
}
public boolean hasNext() {
return index+1 < size();
}
};
}
/**
* Return a copy of the internal keys array. This array can be modified.
*
* @webref doubledict:method
* @brief Return a copy of the internal keys array
*/
public String[] keyArray() {
crop();
return keyArray(null);
}
public String[] keyArray(String[] outgoing) {
if (outgoing == null || outgoing.length != count) {
outgoing = new String[count];
}
System.arraycopy(keys, 0, outgoing, 0, count);
return outgoing;
}
public double value(int index) {
return values[index];
}
/**
* @webref doubledict:method
* @brief Return the internal array being used to store the values
*/
public Iterable values() {
return new Iterable() {
@Override
public Iterator iterator() {
return valueIterator();
}
};
}
public Iterator valueIterator() {
return new Iterator() {
int index = -1;
public void remove() {
removeIndex(index);
index--;
}
public Double next() {
return value(++index);
}
public boolean hasNext() {
return index+1 < size();
}
};
}
/**
* Create a new array and copy each of the values into it.
*
* @webref doubledict:method
* @brief Create a new array and copy each of the values into it
*/
public double[] valueArray() {
crop();
return valueArray(null);
}
/**
* Fill an already-allocated array with the values (more efficient than
* creating a new array each time). If 'array' is null, or not the same
* size as the number of values, a new array will be allocated and returned.
*/
public double[] valueArray(double[] array) {
if (array == null || array.length != size()) {
array = new double[count];
}
System.arraycopy(values, 0, array, 0, count);
return array;
}
/**
* Return a value for the specified key.
*
* @webref doubledict:method
* @brief Return a value for the specified key
*/
public double get(String key) {
int index = index(key);
if (index == -1) {
throw new IllegalArgumentException("No key named '" + key + "'");
}
return values[index];
}
public double get(String key, double alternate) {
int index = index(key);
if (index == -1) {
return alternate;
}
return values[index];
}
/**
* @webref doubledict:method
* @brief Create a new key/value pair or change the value of one
*/
public void set(String key, double amount) {
int index = index(key);
if (index == -1) {
create(key, amount);
} else {
values[index] = amount;
}
}
public void setIndex(int index, String key, double value) {
if (index < 0 || index >= count) {
throw new ArrayIndexOutOfBoundsException(index);
}
keys[index] = key;
values[index] = value;
}
/**
* @webref doubledict:method
* @brief Check if a key is a part of the data structure
*/
public boolean hasKey(String key) {
return index(key) != -1;
}
/**
* @webref doubledict:method
* @brief Add to a value
*/
public void add(String key, double amount) {
int index = index(key);
if (index == -1) {
create(key, amount);
} else {
values[index] += amount;
}
}
/**
* @webref doubledict:method
* @brief Subtract from a value
*/
public void sub(String key, double amount) {
add(key, -amount);
}
/**
* @webref doubledict:method
* @brief Multiply a value
*/
public void mult(String key, double amount) {
int index = index(key);
if (index != -1) {
values[index] *= amount;
}
}
/**
* @webref doubledict:method
* @brief Divide a value
*/
public void div(String key, double amount) {
int index = index(key);
if (index != -1) {
values[index] /= amount;
}
}
private void checkMinMax(String functionName) {
if (count == 0) {
String msg =
String.format("Cannot use %s() on an empty %s.",
functionName, getClass().getSimpleName());
throw new RuntimeException(msg);
}
}
/**
* @webref doublelist:method
* @brief Return the smallest value
*/
public int minIndex() {
//checkMinMax("minIndex");
if (count == 0) return -1;
// Will still return NaN if there are 1 or more entries, and they're all NaN
double m = Float.NaN;
int mi = -1;
for (int i = 0; i < count; i++) {
// find one good value to start
if (values[i] == values[i]) {
m = values[i];
mi = i;
// calculate the rest
for (int j = i+1; j < count; j++) {
double d = values[j];
if ((d == d) && (d < m)) {
m = values[j];
mi = j;
}
}
break;
}
}
return mi;
}
// return the key for the minimum value
public String minKey() {
checkMinMax("minKey");
int index = minIndex();
if (index == -1) {
return null;
}
return keys[index];
}
// return the minimum value, or throw an error if there are no values
public double minValue() {
checkMinMax("minValue");
int index = minIndex();
if (index == -1) {
return Float.NaN;
}
return values[index];
}
/**
* @webref doublelist:method
* @brief Return the largest value
*/
// The index of the entry that has the max value. Reference above is incorrect.
public int maxIndex() {
//checkMinMax("maxIndex");
if (count == 0) {
return -1;
}
// Will still return NaN if there is 1 or more entries, and they're all NaN
double m = Double.NaN;
int mi = -1;
for (int i = 0; i < count; i++) {
// find one good value to start
if (values[i] == values[i]) {
m = values[i];
mi = i;
// calculate the rest
for (int j = i+1; j < count; j++) {
double d = values[j];
if (!Double.isNaN(d) && (d > m)) {
m = values[j];
mi = j;
}
}
break;
}
}
return mi;
}
/** The key for a max value; null if empty or everything is NaN (no max). */
public String maxKey() {
//checkMinMax("maxKey");
int index = maxIndex();
if (index == -1) {
return null;
}
return keys[index];
}
/** The max value. (Or NaN if no entries or they're all NaN.) */
public double maxValue() {
//checkMinMax("maxValue");
int index = maxIndex();
if (index == -1) {
return Float.NaN;
}
return values[index];
}
public double sum() {
double sum = 0;
for (int i = 0; i < count; i++) {
sum += values[i];
}
return sum;
}
public int index(String what) {
Integer found = indices.get(what);
return (found == null) ? -1 : found.intValue();
}
protected void create(String what, double much) {
if (count == keys.length) {
keys = PApplet.expand(keys);
values = PApplet.expand(values);
}
indices.put(what, Integer.valueOf(count));
keys[count] = what;
values[count] = much;
count++;
}
/**
* @webref doubledict:method
* @brief Remove a key/value pair
*/
public double remove(String key) {
int index = index(key);
if (index == -1) {
throw new NoSuchElementException("'" + key + "' not found");
}
double value = values[index];
removeIndex(index);
return value;
}
public double removeIndex(int index) {
if (index < 0 || index >= count) {
throw new ArrayIndexOutOfBoundsException(index);
}
double value = values[index];
indices.remove(keys[index]);
for (int i = index; i < count-1; i++) {
keys[i] = keys[i+1];
values[i] = values[i+1];
indices.put(keys[i], i);
}
count--;
keys[count] = null;
values[count] = 0;
return value;
}
public void swap(int a, int b) {
String tkey = keys[a];
double tvalue = values[a];
keys[a] = keys[b];
values[a] = values[b];
keys[b] = tkey;
values[b] = tvalue;
// indices.put(keys[a], Integer.valueOf(a));
// indices.put(keys[b], Integer.valueOf(b));
}
/**
* Sort the keys alphabetically (ignoring case). Uses the value as a
* tie-breaker (only really possible with a key that has a case change).
*
* @webref doubledict:method
* @brief Sort the keys alphabetically
*/
public void sortKeys() {
sortImpl(true, false, true);
}
/**
* @webref doubledict:method
* @brief Sort the keys alphabetically in reverse
*/
public void sortKeysReverse() {
sortImpl(true, true, true);
}
/**
* Sort by values in descending order (largest value will be at [0]).
*
* @webref doubledict:method
* @brief Sort by values in ascending order
*/
public void sortValues() {
sortValues(true);
}
/**
* Set true to ensure that the order returned is identical. Slightly
* slower because the tie-breaker for identical values compares the keys.
* @param stable
*/
public void sortValues(boolean stable) {
sortImpl(false, false, stable);
}
/**
* @webref doubledict:method
* @brief Sort by values in descending order
*/
public void sortValuesReverse() {
sortValuesReverse(true);
}
public void sortValuesReverse(boolean stable) {
sortImpl(false, true, stable);
}
protected void sortImpl(final boolean useKeys, final boolean reverse,
final boolean stable) {
Sort s = new Sort() {
@Override
public int size() {
if (useKeys) {
return count; // don't worry about NaN values
} else if (count == 0) { // skip the NaN check, it'll AIOOBE
return 0;
} else { // first move NaN values to the end of the list
int right = count - 1;
while (values[right] != values[right]) {
right--;
if (right == -1) {
return 0; // all values are NaN
}
}
for (int i = right; i >= 0; --i) {
if (Double.isNaN(values[i])) {
swap(i, right);
--right;
}
}
return right + 1;
}
}
@Override
public int compare(int a, int b) {
double diff = 0;
if (useKeys) {
diff = keys[a].compareToIgnoreCase(keys[b]);
if (diff == 0) {
diff = values[a] - values[b];
}
} else { // sort values
diff = values[a] - values[b];
if (diff == 0 && stable) {
diff = keys[a].compareToIgnoreCase(keys[b]);
}
}
if (diff == 0) {
return 0;
} else if (reverse) {
return diff < 0 ? 1 : -1;
} else {
return diff < 0 ? -1 : 1;
}
}
@Override
public void swap(int a, int b) {
DoubleDict.this.swap(a, b);
}
};
s.run();
// Set the indices after sort/swaps (performance fix 160411)
resetIndices();
}
/**
* Sum all of the values in this dictionary, then return a new FloatDict of
* each key, divided by the total sum. The total for all values will be ~1.0.
* @return a FloatDict with the original keys, mapped to their pct of the total
*/
public DoubleDict getPercent() {
double sum = sum();
DoubleDict outgoing = new DoubleDict();
for (int i = 0; i < size(); i++) {
double percent = value(i) / sum;
outgoing.set(key(i), percent);
}
return outgoing;
}
/** Returns a duplicate copy of this object. */
public DoubleDict copy() {
DoubleDict outgoing = new DoubleDict(count);
System.arraycopy(keys, 0, outgoing.keys, 0, count);
System.arraycopy(values, 0, outgoing.values, 0, count);
for (int i = 0; i < count; i++) {
outgoing.indices.put(keys[i], i);
}
outgoing.count = count;
return outgoing;
}
public void print() {
for (int i = 0; i < size(); i++) {
System.out.println(keys[i] + " = " + values[i]);
}
}
/**
* Save tab-delimited entries to a file (TSV format, UTF-8 encoding)
*/
public void save(File file) {
PrintWriter writer = PApplet.createWriter(file);
write(writer);
writer.close();
}
/**
* Write tab-delimited entries out to
* @param writer
*/
public void write(PrintWriter writer) {
for (int i = 0; i < count; i++) {
writer.println(keys[i] + "\t" + values[i]);
}
writer.flush();
}
/**
* Return this dictionary as a String in JSON format.
*/
public String toJSON() {
StringList items = new StringList();
for (int i = 0; i < count; i++) {
items.append(JSONObject.quote(keys[i])+ ": " + values[i]);
}
return "{ " + items.join(", ") + " }";
}
@Override
public String toString() {
return getClass().getSimpleName() + " size=" + size() + " " + toJSON();
}
}