All Downloads are FREE. Search and download functionalities are using the official Maven repository.

processing.lwjgl.tess.Normal Maven / Gradle / Ivy

There is a newer version: 4.430.1
Show newest version
/*
* Portions Copyright (C) 2003-2006 Sun Microsystems, Inc.
* All rights reserved.
*/

/*
** License Applicability. Except to the extent portions of this file are
** made subject to an alternative license as permitted in the SGI Free
** Software License B, Version 2.0 (the "License"), the contents of this
** file are subject only to the provisions of the License. You may not use
** this file except in compliance with the License. You may obtain a copy
** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
**
** http://oss.sgi.com/projects/FreeB
**
** Note that, as provided in the License, the Software is distributed on an
** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
**
** NOTE:  The Original Code (as defined below) has been licensed to Sun
** Microsystems, Inc. ("Sun") under the SGI Free Software License B
** (Version 1.1), shown above ("SGI License").   Pursuant to Section
** 3.2(3) of the SGI License, Sun is distributing the Covered Code to
** you under an alternative license ("Alternative License").  This
** Alternative License includes all of the provisions of the SGI License
** except that Section 2.2 and 11 are omitted.  Any differences between
** the Alternative License and the SGI License are offered solely by Sun
** and not by SGI.
**
** Original Code. The Original Code is: OpenGL Sample Implementation,
** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
** Copyright in any portions created by third parties is as indicated
** elsewhere herein. All Rights Reserved.
**
** Additional Notice Provisions: The application programming interfaces
** established by SGI in conjunction with the Original Code are The
** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
** Window System(R) (Version 1.3), released October 19, 1998. This software
** was created using the OpenGL(R) version 1.2.1 Sample Implementation
** published by SGI, but has not been independently verified as being
** compliant with the OpenGL(R) version 1.2.1 Specification.
**
** Author: Eric Veach, July 1994
** Java Port: Pepijn Van Eeckhoudt, July 2003
** Java Port: Nathan Parker Burg, August 2003
** Processing integration: Andres Colubri, February 2012
*/

package processing.lwjgl.tess;


class Normal {
    private Normal() {
    }

    static boolean SLANTED_SWEEP = false;
    static double S_UNIT_X;    /* Pre-normalized */
    static double S_UNIT_Y;
    private static final boolean TRUE_PROJECT = false;

    static {
        if (SLANTED_SWEEP) {
/* The "feature merging" is not intended to be complete.  There are
 * special cases where edges are nearly parallel to the sweep line
 * which are not implemented.  The algorithm should still behave
 * robustly (ie. produce a reasonable tesselation) in the presence
 * of such edges, however it may miss features which could have been
 * merged.  We could minimize this effect by choosing the sweep line
 * direction to be something unusual (ie. not parallel to one of the
 * coordinate axes).
 */
            S_UNIT_X = 0.50941539564955385;    /* Pre-normalized */
            S_UNIT_Y = 0.86052074622010633;
        } else {
            S_UNIT_X = 1.0;
            S_UNIT_Y = 0.0;
        }
    }

    private static double Dot(double[] u, double[] v) {
        return (u[0] * v[0] + u[1] * v[1] + u[2] * v[2]);
    }

    static void Normalize(double[] v) {
        double len = v[0] * v[0] + v[1] * v[1] + v[2] * v[2];

        assert (len > 0);
        len = Math.sqrt(len);
        v[0] /= len;
        v[1] /= len;
        v[2] /= len;
    }

    static int LongAxis(double[] v) {
        int i = 0;

        if (Math.abs(v[1]) > Math.abs(v[0])) {
            i = 1;
        }
        if (Math.abs(v[2]) > Math.abs(v[i])) {
            i = 2;
        }
        return i;
    }

    static void ComputeNormal(GLUtessellatorImpl tess, double[] norm) {
        GLUvertex v, v1, v2;
        double c, tLen2, maxLen2;
        double[] maxVal, minVal, d1, d2, tNorm;
        GLUvertex[] maxVert, minVert;
        GLUvertex vHead = tess.mesh.vHead;
        int i;

        maxVal = new double[3];
        minVal = new double[3];
        minVert = new GLUvertex[3];
        maxVert = new GLUvertex[3];
        d1 = new double[3];
        d2 = new double[3];
        tNorm = new double[3];

        maxVal[0] = maxVal[1] = maxVal[2] = -2 * PGLU.GLU_TESS_MAX_COORD;
        minVal[0] = minVal[1] = minVal[2] = 2 * PGLU.GLU_TESS_MAX_COORD;

        for (v = vHead.next; v != vHead; v = v.next) {
            for (i = 0; i < 3; ++i) {
                c = v.coords[i];
                if (c < minVal[i]) {
                    minVal[i] = c;
                    minVert[i] = v;
                }
                if (c > maxVal[i]) {
                    maxVal[i] = c;
                    maxVert[i] = v;
                }
            }
        }

/* Find two vertices separated by at least 1/sqrt(3) of the maximum
         * distance between any two vertices
         */
        i = 0;
        if (maxVal[1] - minVal[1] > maxVal[0] - minVal[0]) {
            i = 1;
        }
        if (maxVal[2] - minVal[2] > maxVal[i] - minVal[i]) {
            i = 2;
        }
        if (minVal[i] >= maxVal[i]) {
/* All vertices are the same -- normal doesn't matter */
            norm[0] = 0;
            norm[1] = 0;
            norm[2] = 1;
            return;
        }

/* Look for a third vertex which forms the triangle with maximum area
         * (Length of normal == twice the triangle area)
         */
        maxLen2 = 0;
        v1 = minVert[i];
        v2 = maxVert[i];
        d1[0] = v1.coords[0] - v2.coords[0];
        d1[1] = v1.coords[1] - v2.coords[1];
        d1[2] = v1.coords[2] - v2.coords[2];
        for (v = vHead.next; v != vHead; v = v.next) {
            d2[0] = v.coords[0] - v2.coords[0];
            d2[1] = v.coords[1] - v2.coords[1];
            d2[2] = v.coords[2] - v2.coords[2];
            tNorm[0] = d1[1] * d2[2] - d1[2] * d2[1];
            tNorm[1] = d1[2] * d2[0] - d1[0] * d2[2];
            tNorm[2] = d1[0] * d2[1] - d1[1] * d2[0];
            tLen2 = tNorm[0] * tNorm[0] + tNorm[1] * tNorm[1] + tNorm[2] * tNorm[2];
            if (tLen2 > maxLen2) {
                maxLen2 = tLen2;
                norm[0] = tNorm[0];
                norm[1] = tNorm[1];
                norm[2] = tNorm[2];
            }
        }

        if (maxLen2 <= 0) {
/* All points lie on a single line -- any decent normal will do */
            norm[0] = norm[1] = norm[2] = 0;
            norm[LongAxis(d1)] = 1;
        }
    }

    static void CheckOrientation(GLUtessellatorImpl tess) {
        double area;
        GLUface f, fHead = tess.mesh.fHead;
        GLUvertex v, vHead = tess.mesh.vHead;
        GLUhalfEdge e;

/* When we compute the normal automatically, we choose the orientation
 * so that the the sum of the signed areas of all contours is non-negative.
 */
        area = 0;
        for (f = fHead.next; f != fHead; f = f.next) {
            e = f.anEdge;
            if (e.winding <= 0) continue;
            do {
                area += (e.Org.s - e.Sym.Org.s) * (e.Org.t + e.Sym.Org.t);
                e = e.Lnext;
            } while (e != f.anEdge);
        }
        if (area < 0) {
/* Reverse the orientation by flipping all the t-coordinates */
            for (v = vHead.next; v != vHead; v = v.next) {
                v.t = -v.t;
            }
            tess.tUnit[0] = -tess.tUnit[0];
            tess.tUnit[1] = -tess.tUnit[1];
            tess.tUnit[2] = -tess.tUnit[2];
        }
    }

/* Determine the polygon normal and project vertices onto the plane
 * of the polygon.
 */
    public static void __gl_projectPolygon(GLUtessellatorImpl tess) {
       GLUvertex v, vHead = tess.mesh.vHead;
        double w;
        double[] norm = new double[3];
        double[] sUnit, tUnit;
        int i;
        boolean computedNormal = false;

        norm[0] = tess.normal[0];
        norm[1] = tess.normal[1];
        norm[2] = tess.normal[2];
        if (norm[0] == 0 && norm[1] == 0 && norm[2] == 0) {
            ComputeNormal(tess, norm);
            computedNormal = true;
        }
        sUnit = tess.sUnit;
        tUnit = tess.tUnit;
        i = LongAxis(norm);

        if (TRUE_PROJECT) {
/* Choose the initial sUnit vector to be approximately perpendicular
 * to the normal.
 */
            Normalize(norm);

            sUnit[i] = 0;
            sUnit[(i + 1) % 3] = S_UNIT_X;
            sUnit[(i + 2) % 3] = S_UNIT_Y;

/* Now make it exactly perpendicular */
            w = Dot(sUnit, norm);
            sUnit[0] -= w * norm[0];
            sUnit[1] -= w * norm[1];
            sUnit[2] -= w * norm[2];
            Normalize(sUnit);

/* Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame */
            tUnit[0] = norm[1] * sUnit[2] - norm[2] * sUnit[1];
            tUnit[1] = norm[2] * sUnit[0] - norm[0] * sUnit[2];
            tUnit[2] = norm[0] * sUnit[1] - norm[1] * sUnit[0];
            Normalize(tUnit);
        } else {
/* Project perpendicular to a coordinate axis -- better numerically */
            sUnit[i] = 0;
            sUnit[(i + 1) % 3] = S_UNIT_X;
            sUnit[(i + 2) % 3] = S_UNIT_Y;

            tUnit[i] = 0;
            tUnit[(i + 1) % 3] = (norm[i] > 0) ? -S_UNIT_Y : S_UNIT_Y;
            tUnit[(i + 2) % 3] = (norm[i] > 0) ? S_UNIT_X : -S_UNIT_X;
        }

/* Project the vertices onto the sweep plane */
        for (v = vHead.next; v != vHead; v = v.next) {
            v.s = Dot(v.coords, sUnit);
            v.t = Dot(v.coords, tUnit);
        }
        if (computedNormal) {
            CheckOrientation(tess);
        }
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy