org.python.modules.binascii Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jython-slim Show documentation
Show all versions of jython-slim Show documentation
Jython is an implementation of the high-level, dynamic, object-oriented
language Python written in 100% Pure Java, and seamlessly integrated with
the Java platform. It thus allows you to run Python on any Java platform.
/*
* Copyright 1998 Finn Bock.
*
* This program contains material copyrighted by:
* Copyright (c) 1991, 1992, 1993, 1994 by Stichting Mathematisch Centrum,
* Amsterdam, The Netherlands.
*/
package org.python.modules;
import java.util.regex.Pattern;
import org.python.core.ArgParser;
import org.python.core.BufferProtocol;
import org.python.core.Py;
import org.python.core.PyBUF;
import org.python.core.PyBuffer;
import org.python.core.PyException;
import org.python.core.PyObject;
import org.python.core.PyString;
import org.python.core.PyStringMap;
import org.python.core.PyTuple;
import org.python.core.PyUnicode;
import org.python.core.buffer.SimpleStringBuffer;
import org.python.core.util.StringUtil;
/**
* The binascii.java module contains a number of methods to convert
* between binary and various ASCII-encoded binary
* representations. Normally, you will not use these modules directly but
* use wrapper modules like uu or
* hexbin instead, this module solely
* exists because bit-manipulation of large amounts of data is slow in
* Python.
*
*
* The binascii.java module defines the following functions:
*
*
* - a2b_uu (string)
* -
* Convert a single line of uuencoded data back to binary and return the
* binary data. Lines normally contain 45 (binary) bytes, except for the
* last line. Line data may be followed by whitespace.
*
*
* - b2a_uu (data)
* -
* Convert binary data to a line of ASCII characters, the return value
* is the converted line, including a newline char. The length of
* data should be at most 45.
*
*
* - a2b_base64 (string)
* -
* Convert a block of base64 data back to binary and return the
* binary data. More than one line may be passed at a time.
*
*
* - b2a_base64 (data)
* -
* Convert binary data to a line of ASCII characters in base64 coding.
* The return value is the converted line, including a newline char.
* The length of data should be at most 57 to adhere to the base64
* standard.
*
*
* - a2b_hqx (string)
* -
* Convert binhex4 formatted ASCII data to binary, without doing
* RLE-decompression. The string should contain a complete number of
* binary bytes, or (in case of the last portion of the binhex4 data)
* have the remaining bits zero.
*
*
* - rledecode_hqx (data)
* -
* Perform RLE-decompression on the data, as per the binhex4
* standard. The algorithm uses 0x90 after a byte as a repeat
* indicator, followed by a count. A count of 0 specifies a byte
* value of 0x90. The routine returns the decompressed data,
* unless data input data ends in an orphaned repeat indicator, in which
* case the Incomplete exception is raised.
*
*
* - rlecode_hqx (data)
* -
* Perform binhex4 style RLE-compression on data and return the
* result.
*
*
* - b2a_hqx (data)
* -
* Perform hexbin4 binary-to-ASCII translation and return the
* resulting string. The argument should already be RLE-coded, and have a
* length divisible by 3 (except possibly the last fragment).
*
*
* - crc_hqx (data, crc)
* -
* Compute the binhex4 crc value of data, starting with an initial
* crc and returning the result.
*
*
* - Error
* -
* Exception raised on errors. These are usually programming errors.
*
*
* - Incomplete
* -
* Exception raised on incomplete data. These are usually not programming
* errors, but may be handled by reading a little more data and trying
* again.
*
*
*
* The module is a line-by-line conversion of the original binasciimodule.c
* written by Jack Jansen, except that all mistakes and errors are my own.
*
* @author Finn Bock, [email protected]
* @version binascii.java,v 1.6 1999/02/20 11:37:07 fb Exp
*/
public class binascii {
public static String __doc__ = "Conversion between binary data and ASCII";
public static final PyObject Error = Py.makeClass("Error", Py.Exception, exceptionNamespace());
public static final PyObject Incomplete = Py.makeClass("Incomplete", Py.Exception,
exceptionNamespace());
public static PyObject exceptionNamespace() {
PyObject dict = new PyStringMap();
dict.__setitem__("__module__", new PyString("binascii"));
return dict;
}
// hqx lookup table, ascii->binary.
private static char RUNCHAR = 0x90;
private static short DONE = 0x7F;
private static short SKIP = 0x7E;
private static short FAIL = 0x7D;
private static short[] table_a2b_hqx = {
/* ^@ ^A ^B ^C ^D ^E ^F ^G */
/* 0*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
/* \b \t \n ^K ^L \r ^N ^O */
/* 1*/ FAIL, FAIL, SKIP, FAIL, FAIL, SKIP, FAIL, FAIL,
/* ^P ^Q ^R ^S ^T ^U ^V ^W */
/* 2*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
/* ^X ^Y ^Z ^[ ^\ ^] ^^ ^_ */
/* 3*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
/* ! " # $ % & ' */
/* 4*/ FAIL, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
/* ( ) * + , - . / */
/* 5*/ 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, FAIL, FAIL,
/* 0 1 2 3 4 5 6 7 */
/* 6*/ 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, FAIL,
/* 8 9 : ; < = > ? */
/* 7*/ 0x14, 0x15, DONE, FAIL, FAIL, FAIL, FAIL, FAIL,
/* @ A B C D E F G */
/* 8*/ 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D,
/* H I J K L M N O */
/* 9*/ 0x1E, 0x1F, 0x20, 0x21, 0x22, 0x23, 0x24, FAIL,
/* P Q R S T U V W */
/*10*/ 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, FAIL,
/* X Y Z [ \ ] ^ _ */
/*11*/ 0x2C, 0x2D, 0x2E, 0x2F, FAIL, FAIL, FAIL, FAIL,
/* ` a b c d e f g */
/*12*/ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, FAIL,
/* h i j k l m n o */
/*13*/ 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, FAIL, FAIL,
/* p q r s t u v w */
/*14*/ 0x3D, 0x3E, 0x3F, FAIL, FAIL, FAIL, FAIL, FAIL,
/* x y z { | } ~ ^? */
/*15*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
/*16*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL,
};
private static byte[] table_b2a_hqx =
StringUtil.toBytes("!\"#$%&'()*+,-012345689@ABCDEFGHIJKLMNPQRSTUVXYZ[`abcdefhijklmpqr");
private static short table_a2b_base64[] = {
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,62, -1,-1,-1,63,
52,53,54,55, 56,57,58,59, 60,61,-1,-1, -1, 0,-1,-1, /* Note PAD->0 */
-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11,12,13,14,
15,16,17,18, 19,20,21,22, 23,24,25,-1, -1,-1,-1,-1,
-1,26,27,28, 29,30,31,32, 33,34,35,36, 37,38,39,40,
41,42,43,44, 45,46,47,48, 49,50,51,-1, -1,-1,-1,-1
};
private static char BASE64_PAD = '=';
/* Max binary chunk size */
private static int BASE64_MAXBIN = Integer.MAX_VALUE / 2 - 3;
private static byte[] table_b2a_base64 =
StringUtil.toBytes("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/");
private static int[] crctab_hqx = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,
0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,
0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,
0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0,
};
public static PyString __doc__a2b_uu = new PyString(
"(ascii) -> bin. Decode a line of uuencoded data"
);
/**
* Convert a single line of uuencoded data back to binary and return the
* binary data. Lines normally contain 45 (binary) bytes, except for the
* last line. Line data may be followed by whitespace.
*/
public static PyString a2b_uu(BufferProtocol bp) {
int leftbits = 0;
int leftchar = 0;
StringBuilder bin_data = new StringBuilder();
try (PyBuffer ascii_data = getTextBuffer(bp)) {
if (ascii_data.getLen() == 0) {
return new PyString("");
}
char this_ch;
int i;
int ascii_len = ascii_data.getLen()-1;
int bin_len = (ascii_data.intAt(0) - ' ') & 077;
for (i = 0; bin_len > 0 && ascii_len > 0; i++, ascii_len--) {
this_ch = (char) ascii_data.intAt(i+1);
if (this_ch == '\n' || this_ch == '\r' || ascii_len <= 0) {
// Whitespace. Assume some spaces got eaten at
// end-of-line. (We check this later)
this_ch = 0;
} else {
// Check the character for legality
// The 64 in stead of the expected 63 is because
// there are a few uuencodes out there that use
// '@' as zero instead of space.
if ( this_ch < ' ' || this_ch > (' ' + 64)) {
throw new PyException(Error, "Illegal char");
}
this_ch = (char)((this_ch - ' ') & 077);
}
// Shift it in on the low end, and see if there's
// a byte ready for output.
leftchar = (leftchar << 6) | (this_ch);
leftbits += 6;
if (leftbits >= 8) {
leftbits -= 8;
bin_data.append((char)((leftchar >> leftbits) & 0xff));
leftchar &= ((1 << leftbits) - 1);
bin_len--;
}
}
// Finally, check that if there's anything left on the line
// that it's whitespace only.
while (ascii_len-- > 0) {
this_ch = (char) ascii_data.intAt(++i);
// Extra '@' may be written as padding in some cases
if (this_ch != ' ' && this_ch != '@' &&
this_ch != '\n' && this_ch != '\r') {
throw new PyException(Error, "Trailing garbage");
}
}
// finally, if we haven't decoded enough stuff, fill it up with zeros
for (; i < bin_len; i++) {
bin_data.append((char) 0);
}
return new PyString(bin_data.toString());
} catch (ClassCastException e) {
throw argMustBeBytes("a2b_uu", bp);
}
}
public static PyString __doc__b2a_uu = new PyString(
"(bin) -> ascii. Uuencode line of data"
);
/**
* Convert binary data to a line of ASCII characters, the return value
* is the converted line, including a newline char. The length of
* data should be at most 45.
*/
public static PyString b2a_uu(BufferProtocol bp) {
int leftbits = 0;
char this_ch;
int leftchar = 0;
PyBuffer bin_data = bp.getBuffer(PyBUF.SIMPLE);
StringBuilder ascii_data = new StringBuilder();
try {
int bin_len = bin_data.getLen();
if (bin_len > 45) {
// The 45 is a limit that appears in all uuencode's
throw new PyException(Error, "At most 45 bytes at once");
}
// Store the length */
ascii_data.append((char)(' ' + (bin_len & 077)));
for (int i = 0; bin_len > 0 || leftbits != 0; i++, bin_len--) {
// Shift the data (or padding) into our buffer
if (bin_len > 0) {
leftchar = (leftchar << 8) | (char) bin_data.intAt(i);
} else {
leftchar <<= 8;
}
leftbits += 8;
// See if there are 6-bit groups ready
while (leftbits >= 6) {
this_ch = (char)((leftchar >> (leftbits-6)) & 0x3f);
leftbits -= 6;
ascii_data.append((char)(this_ch + ' '));
}
}
} finally {
bin_data.release();
}
ascii_data.append('\n'); // Append a courtesy newline
return new PyString(ascii_data.toString());
}
private static int binascii_find_valid(PyBuffer b, int offset, int num) {
int blen = b.getLen() - offset;
/* Finds & returns the (num+1)th
** valid character for base64, or -1 if none.
*/
int ret = -1;
while ((blen > 0) && (ret == -1)) {
int c = b.intAt(offset);
short b64val = table_a2b_base64[c & 0x7f];
if (((c <= 0x7f) && (b64val != -1)) ) {
if (num == 0) {
ret = c;
}
num--;
}
offset++;
blen--;
}
return ret;
}
public static PyString __doc__a2b_base64 = new PyString(
"(ascii) -> bin. Decode a line of base64 data"
);
/**
* Convert a block of base64 data back to binary and return the
* binary data. More than one line may be passed at a time.
*/
public static PyString a2b_base64(BufferProtocol bp) {
int leftbits = 0;
char this_ch;
int leftchar = 0;
int quad_pos = 0;
try (PyBuffer ascii_data = getTextBuffer(bp)) {
int ascii_len = ascii_data.getLen();
int bin_len = 0;
StringBuilder bin_data = new StringBuilder();
for (int i = 0; ascii_len > 0; ascii_len--, i++) {
// Skip some punctuation
this_ch = (char) ascii_data.intAt(i);
if (this_ch > 0x7F || this_ch == '\r' || this_ch == '\n' || this_ch == ' ') {
continue;
}
if (this_ch == BASE64_PAD) {
if (quad_pos < 2 || (quad_pos == 2
&& binascii_find_valid(ascii_data, i, 1) != BASE64_PAD)) {
continue;
} else {
// A pad sequence means no more input.
// We've already interpreted the data
// from the quad at this point.
leftbits = 0;
break;
}
}
short this_v = table_a2b_base64[this_ch];
if (this_v == -1) {
continue;
}
// Shift it in on the low end, and see if there's
// a byte ready for output.
quad_pos = (quad_pos + 1) & 0x03;
leftchar = (leftchar << 6) | (this_v);
leftbits += 6;
if (leftbits >= 8) {
leftbits -= 8;
bin_data.append((char) ((leftchar >> leftbits) & 0xff));
bin_len++;
leftchar &= ((1 << leftbits) - 1);
}
}
// Check that no bits are left
if (leftbits != 0) {
throw new PyException(Error, "Incorrect padding");
}
return new PyString(bin_data.toString());
} catch (ClassCastException e) {
throw argMustBeBytes("a2b_base64", bp);
}
}
public static PyString __doc__b2a_base64 = new PyString(
"(bin) -> ascii. Base64-code line of data"
);
/**
* Convert binary data to a line of ASCII characters in base64 coding.
* The return value is the converted line, including a newline char.
*/
public static PyString b2a_base64(BufferProtocol bp) {
int leftbits = 0;
char this_ch;
int leftchar = 0;
StringBuilder ascii_data = new StringBuilder();
try (PyBuffer bin_data = getTextBuffer(bp)) {
int bin_len = bin_data.getLen();
if (bin_len > BASE64_MAXBIN) {
throw new PyException(Error, "Too much data for base64 line");
}
for (int i = 0; bin_len > 0; bin_len--, i++) {
// Shift the data into our buffer
leftchar = (leftchar << 8) | (char) bin_data.intAt(i); // charAt(i);
leftbits += 8;
// See if there are 6-bit groups ready
while (leftbits >= 6) {
this_ch = (char) ((leftchar >> (leftbits - 6)) & 0x3f);
leftbits -= 6;
ascii_data.append((char) table_b2a_base64[this_ch]);
}
}
if (leftbits == 2) {
ascii_data.append((char) table_b2a_base64[(leftchar & 3) << 4]);
ascii_data.append(BASE64_PAD);
ascii_data.append(BASE64_PAD);
} else if (leftbits == 4) {
ascii_data.append((char) table_b2a_base64[(leftchar & 0xf) << 2]);
ascii_data.append(BASE64_PAD);
}
ascii_data.append('\n'); // Append a courtesy newline
return new PyString(ascii_data.toString());
} catch (ClassCastException e) {
throw argMustBeBytes("b2a_base64", bp);
}
}
public static PyString __doc__a2b_hqx = new PyString(
"ascii -> bin, done. Decode .hqx coding"
);
/**
* Convert binhex4 formatted ASCII data to binary, without doing
* RLE-decompression. The string should contain a complete number of
* binary bytes, or (in case of the last portion of the binhex4 data)
* have the remaining bits zero.
*/
public static PyTuple a2b_hqx(BufferProtocol bp) {
int leftbits = 0;
char this_ch;
int leftchar = 0;
boolean done = false;
try (PyBuffer ascii_data = getTextBuffer(bp)) {
int len = ascii_data.getLen();
StringBuilder bin_data = new StringBuilder();
for (int i = 0; len > 0; len--, i++) {
// Get the byte and look it up
this_ch = (char) table_a2b_hqx[ascii_data.intAt(i)];
if (this_ch == SKIP) {
continue;
}
if (this_ch == FAIL) {
throw new PyException(Error, "Illegal char");
}
if (this_ch == DONE) {
// The terminating colon
done = true;
break;
}
// Shift it into the buffer and see if any bytes are ready
leftchar = (leftchar << 6) | (this_ch);
leftbits += 6;
if (leftbits >= 8) {
leftbits -= 8;
bin_data.append((char) ((leftchar >> leftbits) & 0xff));
leftchar &= ((1 << leftbits) - 1);
}
}
if (leftbits != 0 && !done) {
throw new PyException(Incomplete, "String has incomplete number of bytes");
}
return new PyTuple(new PyString(bin_data.toString()), Py.newInteger(done ? 1 : 0));
} catch (ClassCastException e) {
throw argMustBeBytes("a2b_hqx", bp);
}
}
public static PyString __doc__rlecode_hqx = new PyString(
"Binhex RLE-code binary data"
);
/**
* Perform binhex4 style RLE-compression on data and return the
* result.
*/
static public PyString rlecode_hqx(BufferProtocol bp) {
PyBuffer in_data = bp.getBuffer(PyBUF.SIMPLE);
int len = in_data.getLen();
StringBuilder out_data = new StringBuilder();
try {
for (int in=0; in < len; in++) {
char ch = (char) in_data.intAt(in);
if (ch == RUNCHAR) {
// RUNCHAR. Escape it.
out_data.append(RUNCHAR);
out_data.append((char) 0);
} else {
// Check how many following are the same
int inend;
for (inend=in+1; inend < len &&
(char) in_data.intAt(inend) == ch &&
inend < in+255; inend++) {
;
}
if (inend - in > 3) {
// More than 3 in a row. Output RLE.
out_data.append(ch);
out_data.append(RUNCHAR);
out_data.append((char) (inend-in));
in = inend-1;
} else {
// Less than 3. Output the byte itself
out_data.append(ch);
}
}
}
} finally {
in_data.release();
}
return new PyString(out_data.toString());
}
public static PyString __doc__b2a_hqx = new PyString(
"Encode .hqx data"
);
/**
* Perform hexbin4 binary-to-ASCII translation and return the
* resulting string. The argument should already be RLE-coded, and have a
* length divisible by 3 (except possibly the last fragment).
*/
public static PyString b2a_hqx(BufferProtocol bp) {
int leftbits = 0;
char this_ch;
int leftchar = 0;
try (PyBuffer bin_data = getTextBuffer(bp)) {
int len = bin_data.getLen();
StringBuilder ascii_data = new StringBuilder();
for (int i = 0; len > 0; len--, i++) {
// Shift into our buffer, and output any 6bits ready
leftchar = (leftchar << 8) | (char) bin_data.intAt(i);
leftbits += 8;
while (leftbits >= 6) {
this_ch = (char) ((leftchar >> (leftbits - 6)) & 0x3f);
leftbits -= 6;
ascii_data.append((char) table_b2a_hqx[this_ch]);
}
}
// Output a possible runt byte
if (leftbits != 0) {
leftchar <<= (6 - leftbits);
ascii_data.append((char) table_b2a_hqx[leftchar & 0x3f]);
}
return new PyString(ascii_data.toString());
} catch (ClassCastException e) {
throw argMustBeBytes("b2a_hqx", bp);
}
}
public static PyString __doc__rledecode_hqx = new PyString(
"Decode hexbin RLE-coded string"
);
/**
* Perform RLE-decompression on the data, as per the binhex4
* standard. The algorithm uses 0x90 after a byte as a repeat
* indicator, followed by a count. A count of 0 specifies a byte
* value of 0x90. The routine returns the decompressed data,
* unless data input data ends in an orphaned repeat indicator, in which
* case the Incomplete exception is raised.
*/
static public PyString rledecode_hqx(BufferProtocol bp) {
char in_byte, in_repeat;
PyBuffer in_data = bp.getBuffer(PyBUF.SIMPLE);
int in_len = in_data.getLen();
int i = 0;
StringBuilder out_data = new StringBuilder();
try {
// Empty string is a special case
if (in_len == 0) {
return Py.EmptyString;
}
// Handle first byte separately (since we have to get angry
// in case of an orphaned RLE code).
if (--in_len < 0) {
throw new PyException(Incomplete);
}
in_byte = (char) in_data.intAt(i++);
if (in_byte == RUNCHAR) {
if (--in_len < 0) {
throw new PyException(Incomplete);
}
in_repeat = (char) in_data.intAt(i++);
if (in_repeat != 0) {
// Note Error, not Incomplete (which is at the end
// of the string only). This is a programmer error.
throw new PyException(Error, "Orphaned RLE code at start");
}
out_data.append(RUNCHAR);
} else {
out_data.append(in_byte);
}
while (in_len > 0) {
if (--in_len < 0) {
throw new PyException(Incomplete);
}
in_byte = (char) in_data.intAt(i++);
if (in_byte == RUNCHAR) {
if (--in_len < 0) {
throw new PyException(Incomplete);
}
in_repeat = (char) in_data.intAt(i++);
if (in_repeat == 0) {
// Just an escaped RUNCHAR value
out_data.append(RUNCHAR);
} else {
// Pick up value and output a sequence of it
in_byte = out_data.charAt(out_data.length()-1);
while (--in_repeat > 0) {
out_data.append(in_byte);
}
}
} else {
// Normal byte
out_data.append(in_byte);
}
}
} finally {
in_data.release();
}
return new PyString(out_data.toString());
}
public static PyString __doc__crc_hqx = new PyString(
"(data, oldcrc) -> newcrc. Compute hqx CRC incrementally"
);
/**
* Compute the binhex4 crc value of data, starting with an initial
* crc and returning the result.
*/
public static int crc_hqx(BufferProtocol bp, int crc) {
PyBuffer bin_data = bp.getBuffer(PyBUF.SIMPLE);
int len = bin_data.getLen();
int i = 0;
try {
while(len-- > 0) {
crc=((crc<<8)&0xff00) ^
crctab_hqx[((crc>>8)&0xff)^ (char) bin_data.intAt(i++)];
}
} finally {
bin_data.release();
}
return crc;
}
static long[] crc_32_tab = new long[] {
0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
0x2d02ef8dL
};
public static int crc32(BufferProtocol bp) {
return crc32(bp, 0);
}
public static int crc32(BufferProtocol bp, long crc) {
PyBuffer bin_data = bp.getBuffer(PyBUF.SIMPLE);
int len = bin_data.getLen();
crc &= 0xFFFFFFFFL;
crc = crc ^ 0xFFFFFFFFL;
try {
for (int i = 0; i < len; i++) {
char ch = (char) bin_data.intAt(i);
crc = (int)crc_32_tab[(int) ((crc ^ ch) & 0xffL)] ^ (crc >> 8);
/* Note: (crc >> 8) MUST zero fill on left */
crc &= 0xFFFFFFFFL;
}
} finally {
bin_data.release();
}
if (crc >= 0x80000000) {
return -(int)(crc+1 & 0xFFFFFFFF);
} else {
return (int)(crc & 0xFFFFFFFF);
}
}
private static char[] hexdigit = "0123456789abcdef".toCharArray();
public static PyString __doc__b2a_hex = new PyString(
"b2a_hex(data) -> s; Hexadecimal representation of binary data.\n" +
"\n" +
"This function is also available as \"hexlify()\"."
);
public static PyString b2a_hex(BufferProtocol bp) {
try (PyBuffer argbuf = getTextBuffer(bp)) {
int arglen = argbuf.getLen();
StringBuilder retbuf = new StringBuilder(arglen * 2);
/* make hex version of string, taken from shamodule.c */
for (int i = 0; i < arglen; i++) {
char ch = (char) argbuf.intAt(i);
retbuf.append(hexdigit[(ch >>> 4) & 0xF]);
retbuf.append(hexdigit[ch & 0xF]);
}
return new PyString(retbuf.toString());
} catch (ClassCastException e) {
throw argMustBeBytes("b2a_hex", bp);
}
}
public static PyString hexlify(BufferProtocol argbuf) {
return b2a_hex(argbuf);
}
public static PyString a2b_hex$doc = new PyString(
"a2b_hex(hexstr) -> s; Binary data of hexadecimal representation.\n" +
"\n" +
"hexstr must contain an even number of hex digits "+
"(upper or lower case).\n"+
"This function is also available as \"unhexlify()\""
);
public static PyString a2b_hex(BufferProtocol bp) {
try (PyBuffer argbuf = bp.getBuffer(PyBUF.SIMPLE)) {
int arglen = argbuf.getLen();
StringBuilder retbuf = new StringBuilder(arglen / 2);
/*
* XXX What should we do about strings with an odd length? Should we add an implicit
* leading zero, or a trailing zero? For now, raise an exception.
*/
if (arglen % 2 != 0) {
throw Py.TypeError("Odd-length string");
}
for (int i = 0; i < arglen; i += 2) {
int top = Character.digit(argbuf.intAt(i), 16);
int bot = Character.digit(argbuf.intAt(i + 1), 16);
if (top == -1 || bot == -1) {
throw Py.TypeError("Non-hexadecimal digit found");
}
retbuf.append((char) ((top << 4) + bot));
}
return new PyString(retbuf.toString());
} catch (ClassCastException e) {
throw argMustBeBytes("a2b_hex", bp);
}
}
public static PyString unhexlify(BufferProtocol argbuf) {
return a2b_hex(argbuf);
}
final private static char[] upper_hexdigit = "0123456789ABCDEF".toCharArray();
private static StringBuilder qpEscape(StringBuilder sb, char c)
{
sb.append('=');
sb.append(upper_hexdigit[(c >>> 4) & 0xF]);
sb.append(upper_hexdigit[c & 0xF]);
return sb;
}
final private static Pattern UNDERSCORE = Pattern.compile("_");
final public static PyString __doc__a2b_qp = new PyString("Decode a string of qp-encoded data");
public static boolean getIntFlagAsBool(ArgParser ap, int index, int dflt, String errMsg) {
boolean val;
try {
val = ap.getInt(index, dflt) != 0;
} catch (PyException e) {
if (e.match(Py.AttributeError) || e.match(Py.ValueError)) {
throw Py.TypeError(errMsg);
}
throw e;
}
return val;
}
public static PyString a2b_qp(PyObject[] arg, String[] kws)
{
ArgParser ap = new ArgParser("a2b_qp", arg, kws, new String[] {"s", "header"});
PyObject pyObject = ap.getPyObject(0);
BufferProtocol bp;
if (pyObject instanceof BufferProtocol) {
bp = (BufferProtocol) pyObject;
} else {
throw Py.TypeError("expected something conforming to the buffer protocol, got "
+ pyObject.getType().fastGetName());
}
StringBuilder sb = new StringBuilder();
boolean header = getIntFlagAsBool(ap, 1, 0, "an integer is required");
PyBuffer ascii_data = bp.getBuffer(PyBUF.SIMPLE);
try {
for (int i=0, m=ascii_data.getLen(); i= '0' && c <= '9' || c >= 'A' && c <= 'F') && i < m) {
char nc = (char) ascii_data.intAt(i++);
if ((nc >= '0' && nc <= '9' || nc >= 'A' && nc <= 'F')) {
sb.append((char)(Character.digit(c, 16) << 4 | Character.digit(nc, 16)));
} else {
sb.append('=').append(c).append(nc);
}
} else if (c != '\n') {
sb.append('=').append(c);
}
}
} else {
sb.append(c);
}
}
} finally {
ascii_data.release();
}
return new PyString(sb.toString());
}
final private static Pattern RN_TO_N = Pattern.compile("\r\n");
final private static Pattern N_TO_RN = Pattern.compile("(? s;\n"
+ "Encode a string using quoted-printable encoding.\n\n"
+ "On encoding, when istext is set, newlines are not encoded, and white\n"
+ "space at end of lines is. When istext is not set, \r and \n (CR/LF) are\n"
+ "both encoded. When quotetabs is set, space and tabs are encoded.");
public static PyString b2a_qp(PyObject[] arg, String[] kws) {
ArgParser ap = new ArgParser("b2a_qp", arg, kws, new String[] {"s", "quotetabs", "istext", "header"});
boolean quotetabs = getIntFlagAsBool(ap, 1, 0, "an integer is required");
boolean istext = getIntFlagAsBool(ap, 2, 1, "an integer is required");
boolean header = getIntFlagAsBool(ap, 3, 0, "an integer is required");
PyObject pyObject = ap.getPyObject(0);
BufferProtocol bp;
if (pyObject instanceof BufferProtocol) {
bp = (BufferProtocol) pyObject;
} else {
throw Py.TypeError("expected something conforming to the buffer protocol, got "
+ pyObject.getType().fastGetName());
}
PyBuffer bin_data = bp.getBuffer(PyBUF.SIMPLE);
int datalen = bin_data.getLen();
StringBuilder sb = new StringBuilder(datalen);
try {
String lineEnd = "\n";
// Work out if line endings should be crlf.
for (int i = 0, m = bin_data.getLen(); i < m; i++) {
if ('\n' == bin_data.intAt(i)) {
if (i > 0 && '\r' == bin_data.intAt(i-1)) {
lineEnd = "\r\n";
}
break;
}
}
int count = 0;
int MAXLINESIZE = 76;
int in = 0;
while (in < datalen) {
char ch = (char) bin_data.intAt(in);
if ((ch > 126) ||
(ch == '=') ||
(header && ch == '_') ||
((ch == '.') && (count == 0) &&
((in+1 == datalen) || (char) bin_data.intAt(in+1) == '\n' || (char) bin_data.intAt(in+1) == '\r')) ||
(!istext && ((ch == '\r') || (ch == '\n'))) ||
((ch == '\t' || ch == ' ') && (in + 1 == datalen)) ||
((ch < 33) &&
(ch != '\r') && (ch != '\n') &&
(quotetabs ||
(!quotetabs && ((ch != '\t') && (ch != ' '))))))
{
if ((count + 3 )>= MAXLINESIZE) {
sb.append('=');
sb.append(lineEnd);
count = 0;
}
qpEscape(sb, ch);
in++;
count += 3;
}
else {
if (istext &&
((ch == '\n') ||
((in+1 < datalen) && (ch == '\r') &&
(bin_data.intAt(in+1) == '\n'))))
{
count = 0;
/* Protect against whitespace on end of line */
int out = sb.length();
if (out > 0 && ((sb.charAt(out-1) == ' ') || (sb.charAt(out-1) == '\t'))) {
ch = sb.charAt(out-1);
sb.setLength(out-1);
qpEscape(sb, ch);
}
sb.append(lineEnd);
if (ch == '\r') {
in+=2;
} else {
in++;
}
}
else {
if ((in + 1 != datalen) &&
((char) bin_data.intAt(in+1) != '\n') &&
(count + 1) >= MAXLINESIZE) {
sb.append('=');
sb.append(lineEnd);
count = 0;
}
count++;
if (header && ch == ' ') {
sb.append('_');
in++;
}
else {
sb.append(ch);
in++;
}
}
}
}
} finally {
bin_data.release();
}
return new PyString(sb.toString());
}
/**
* We use this when the argument given to a conversion method is to be interpreted as text. If
* it is byte-like, the bytes are used unchanged, assumed in the "intended" character set. It
* may be a {@code PyUnicode}, in which case the it will be decoded to bytes using the default
* encoding ({@code sys.getdefaultencoding()}.
*
* @param text an object with the buffer protocol
* @return a byte-buffer view of the ASCII text
* @throws ClassCastException where the text object does not implement the buffer protocol
*/
private static PyBuffer getTextBuffer(BufferProtocol text)
throws ClassCastException {
if (text instanceof PyUnicode) {
String s = ((PyUnicode) text).encode();
return new SimpleStringBuffer(PyBUF.SIMPLE, null, s);
} else {
return text.getBuffer(PyBUF.SIMPLE);
}
}
/**
* Convenience method providing the exception when an argument is not the expected type, in the
* format "f() argument 1 must bytes or unicode, not type(arg)
."
*
* @param f name of function of error (or could be any text)
* @param arg argument provided from which actual type will be reported
* @return TypeError to throw
*/
private static PyException argMustBeBytes(String f, BufferProtocol arg) {
String fmt = "%s() argument 1 must bytes or unicode, not %s";
String type = "null";
if (arg instanceof PyObject) {
type = ((PyObject) arg).getType().fastGetName();
} else if (arg != null) {
type = arg.getClass().getName();
}
return Py.TypeError(String.format(fmt, f, type));
}
}