All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.python.modules.binascii Maven / Gradle / Ivy

Go to download

Jython is an implementation of the high-level, dynamic, object-oriented language Python written in 100% Pure Java, and seamlessly integrated with the Java platform. It thus allows you to run Python on any Java platform.

The newest version!
/*
 * Copyright 2019 Jython Developers
 *
 * Original conversion from CPython source copyright 1998 Finn Bock.
 *
 * This program contains material copyrighted by: Copyright (c) 1991, 1992, 1993, 1994 by Stichting
 * Mathematisch Centrum, Amsterdam, The Netherlands.
 */

package org.python.modules;

import org.python.core.ArgParser;
import org.python.core.BufferProtocol;
import org.python.core.Py;
import org.python.core.PyBUF;
import org.python.core.PyBuffer;
import org.python.core.PyException;
import org.python.core.PyObject;
import org.python.core.PyString;
import org.python.core.PyStringMap;
import org.python.core.PyTuple;
import org.python.core.PyUnicode;
import org.python.core.buffer.SimpleStringBuffer;

/**
 * The binascii.java module contains a number of methods to convert between binary and
 * various ASCII-encoded binary representations. Normally, you will not use these modules directly
 * but use wrapper modules like uu or hexbin instead, this module solely exists
 * because bit-manipulation of large amounts of data is slow in Python.
 *
 * 

* The binascii.java module defines the following functions: * *

*
a2b_uu (string)
*
Convert a single line of uuencoded data back to binary and return the binary data. Lines * normally contain 45 (binary) bytes, except for the last line. Line data may be followed by * whitespace.
* *
b2a_uu (data)
*
Convert binary data to a line of ASCII characters, the return value is the converted line, * including a newline char. The length of data should be at most 45.
* *
a2b_base64 (string)
*
Convert a block of base64 data back to binary and return the binary data. More than one line * may be passed at a time.
* *
b2a_base64 (data)
*
Convert binary data to a line of ASCII characters in base64 coding. The return value is the * converted line, including a newline char. The length of data should be at most 57 to * adhere to the base64 standard.
* *
a2b_hqx (string)
*
Convert binhex4 formatted ASCII data to binary, without doing RLE-decompression. The string * should contain a complete number of binary bytes, or (in case of the last portion of the binhex4 * data) have the remaining bits zero.
* *
rledecode_hqx (data)
*
Perform RLE-decompression on the data, as per the binhex4 standard. The algorithm uses * 0x90 after a byte as a repeat indicator, followed by a count. A count of 0 * specifies a byte value of 0x90. The routine returns the decompressed data, unless data * input data ends in an orphaned repeat indicator, in which case the Incomplete exception * is raised.
* *
rlecode_hqx (data)
*
Perform binhex4 style RLE-compression on data and return the result.
* *
b2a_hqx (data)
*
Perform hexbin4 binary-to-ASCII translation and return the resulting string. The argument * should already be RLE-coded, and have a length divisible by 3 (except possibly the last * fragment).
* *
crc_hqx (data, crc)
*
Compute the binhex4 crc value of data, starting with an initial crc and * returning the result.
* *
Error
*
Exception raised on errors. These are usually programming errors.
* *
Incomplete
*
Exception raised on incomplete data. These are usually not programming errors, but may be * handled by reading a little more data and trying again.
*
* * The module is a line-by-line conversion of the original binasciimodule.c written by Jack Jansen, * except that all mistakes and errors are my own. * * @author Finn Bock, [email protected] * @version binascii.java,v 1.6 1999/02/20 11:37:07 fb Exp * */ public class binascii { public static String __doc__ = "Conversion between binary data and ASCII"; public static final PyObject Error = Py.makeClass("Error", Py.Exception, exceptionNamespace()); public static final PyObject Incomplete = Py.makeClass("Incomplete", Py.Exception, exceptionNamespace()); public static PyObject exceptionNamespace() { PyObject dict = new PyStringMap(); dict.__setitem__("__module__", new PyString("binascii")); return dict; } // hqx lookup table, ascii->binary. private static char RUNCHAR = 0x90; private static byte DONE = 0x7F; private static byte SKIP = 0x7E; private static byte FAIL = 0x7D; //@formatter:off private static byte[] table_a2b_hqx = { /* ^@ ^A ^B ^C ^D ^E ^F ^G */ /* 0*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, /* \b \t \n ^K ^L \r ^N ^O */ /* 1*/ FAIL, FAIL, SKIP, FAIL, FAIL, SKIP, FAIL, FAIL, /* ^P ^Q ^R ^S ^T ^U ^V ^W */ /* 2*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, /* ^X ^Y ^Z ^[ ^\ ^] ^^ ^_ */ /* 3*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, /* ! " # $ % & ' */ /* 4*/ FAIL, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, /* ( ) * + , - . / */ /* 5*/ 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, FAIL, FAIL, /* 0 1 2 3 4 5 6 7 */ /* 6*/ 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, FAIL, /* 8 9 : ; < = > ? */ /* 7*/ 0x14, 0x15, DONE, FAIL, FAIL, FAIL, FAIL, FAIL, /* @ A B C D E F G */ /* 8*/ 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, /* H I J K L M N O */ /* 9*/ 0x1E, 0x1F, 0x20, 0x21, 0x22, 0x23, 0x24, FAIL, /* P Q R S T U V W */ /*10*/ 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, FAIL, /* X Y Z [ \ ] ^ _ */ /*11*/ 0x2C, 0x2D, 0x2E, 0x2F, FAIL, FAIL, FAIL, FAIL, /* ` a b c d e f g */ /*12*/ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, FAIL, /* h i j k l m n o */ /*13*/ 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, FAIL, FAIL, /* p q r s t u v w */ /*14*/ 0x3D, 0x3E, 0x3F, FAIL, FAIL, FAIL, FAIL, FAIL, /* x y z { | } ~ ^? */ /*15*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, /*16*/ FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, FAIL, }; //@formatter:on private static char[] table_b2a_hqx = "!\"#$%&'()*+,-012345689@ABCDEFGHIJKLMNPQRSTUVXYZ[`abcdefhijklmpqr".toCharArray(); //@formatter:off private static byte table_a2b_base64[] = { -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,62, -1,-1,-1,63, 52,53,54,55, 56,57,58,59, 60,61,-1,-1, -1, 0,-1,-1, /* Note PAD->0 */ -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11,12,13,14, 15,16,17,18, 19,20,21,22, 23,24,25,-1, -1,-1,-1,-1, -1,26,27,28, 29,30,31,32, 33,34,35,36, 37,38,39,40, 41,42,43,44, 45,46,47,48, 49,50,51,-1, -1,-1,-1,-1 }; //@formatter:on private static char BASE64_PAD = '='; /* Max binary chunk size */ private static int BASE64_MAXBIN = Integer.MAX_VALUE / 2 - 3; private static char[] table_b2a_base64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/".toCharArray(); //@formatter:off private static int[] crctab_hqx = { 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7, 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef, 0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6, 0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de, 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485, 0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d, 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4, 0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc, 0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823, 0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b, 0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12, 0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a, 0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41, 0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49, 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70, 0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78, 0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f, 0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067, 0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e, 0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256, 0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d, 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405, 0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c, 0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634, 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab, 0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3, 0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a, 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92, 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9, 0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1, 0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8, 0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0, }; //@formatter:on public static PyString __doc__a2b_uu = new PyString("(ascii) -> bin. Decode a line of uuencoded data"); /** * Convert a single line of uuencoded data back to binary and return the binary data. Lines * normally contain 45 (binary) bytes, except for the last line. Line data may be followed by * whitespace. */ public static PyString a2b_uu(PyObject text) { try (PyBuffer textBuf = getByteBuffer(text)) { int textLen = textBuf.getLen(); if (textLen == 0) { return new PyString(""); } StringBuilder dataBuf = new StringBuilder(); int bits = 0; // store bits not yet emitted (max 12 bits) int bitCount = 0; // how many (valid) bits waiting int index = 0; int dataExpected = (textBuf.intAt(0) - ' ') & 077; textLen -= 1; for (; dataExpected > 0 && textLen > 0; index++, textLen--) { int ch = textBuf.intAt(index + 1); int sixBits; if (ch == '\n' || ch == '\r') { // Whitespace. Assume some spaces got eaten at end-of-line. // (We check this later.) sixBits = 0; } else { /* * Check the character for legality The 64 instead of the expected 63 is because * there are a few uuencodes out there that use '@' as zero instead of space. */ if (ch < ' ' || ch > (' ' + 64)) { throw new PyException(Error, "Illegal char"); } sixBits = (ch - ' ') & 0x3f; } // Shift it in on the low end, and see if there's a byte ready for output. bits = (bits << 6) | sixBits; bitCount += 6; if (bitCount >= 8) { bitCount -= 8; int b = (bits >> bitCount) & 0xff; dataBuf.append((char) b); // byte bits &= (1 << bitCount) - 1; dataExpected--; } } // Finally, check that anything left on the line is white space. while (textLen-- > 0) { int ch = textBuf.intAt(++index); // Extra '@' may be written as padding in some cases if (ch != ' ' && ch != '@' && ch != '\n' && ch != '\r') { throw new PyException(Error, "Trailing garbage"); } } // finally, if we haven't decoded enough stuff, fill it up with zeros for (; index < dataExpected; index++) { dataBuf.append((char) 0); } return new PyString(dataBuf.toString()); } catch (ClassCastException e) { throw argMustBeBytes("a2b_uu", text); } } public static PyString __doc__b2a_uu = new PyString("(bin) -> ascii. Uuencode line of data"); /** * Convert binary data to a line of ASCII characters, the return value is the converted line, * including a newline char. The length of data should be at most 45. */ public static PyString b2a_uu(PyObject data) { try (PyBuffer dataBuf = getByteBuffer(data)) { int dataLen = dataBuf.getLen(); if (dataLen > 45) { // The 45 is a limit that appears in all uuencode's throw new PyException(Error, "At most 45 bytes at once"); } // Each 3 bytes (rounded up) produce 4 characters, plus a 1 byte length and '\n' StringBuilder textBuf = new StringBuilder(4 * ((dataLen + 2) / 3) + 2); int bitCount = 0; int bits = 0; // Store the length textBuf.append((char) (' ' + (dataLen & 077))); for (int i = 0; dataLen > 0 || bitCount != 0; i++, dataLen--) { // Shift the data (or padding) into our buffer if (dataLen > 0) { bits = (bits << 8) | dataBuf.intAt(i); } else { bits <<= 8; } bitCount += 8; // See if there are 6-bit groups ready while (bitCount >= 6) { bitCount -= 6; int sixBits = (bits >> bitCount) & 0x3f; textBuf.append((char) (sixBits + ' ')); } } textBuf.append('\n'); // Append a courtesy newline return new PyString(textBuf.toString()); } catch (ClassCastException e) { throw argMustBeBytes("b2a_uu", data); } } /** Finds & returns the (num+1)th valid character for base64, or -1 if none. */ private static int binascii_find_valid(PyBuffer b, int offset, int num) { int blen = b.getLen() - offset; int ret = -1; while ((blen > 0) && (ret == -1)) { int c = b.intAt(offset); byte b64val = table_a2b_base64[c & 0x7f]; if (((c <= 0x7f) && (b64val != -1))) { if (num == 0) { ret = c; } num--; } offset++; blen--; } return ret; } public static PyString __doc__a2b_base64 = new PyString("(ascii) -> bin. Decode a line of base64 data"); /** * Convert a block of base64 data back to binary and return the binary data. More than one line * may be passed at a time. */ public static PyString a2b_base64(PyObject text) { try (PyBuffer textBuf = getByteBuffer(text)) { int textLen = textBuf.getLen(); // Every 4 characters (rounded up) map to 3 bytes. (Or fewer, if there are extras.) int dataLen = 3 * ((textLen + 3) / 4); // These characters will represent bytes, in the usual Jython 2 way. StringBuilder dataBuf = new StringBuilder(dataLen); int bits = 0; // store bits not yet emitted (max 12 bits) int bitCount = 0; // how many (valid) bits waiting int quad_pos = 0; for (int i = 0; textLen > 0; textLen--, i++) { // Skip some punctuation int ch = textBuf.intAt(i); if (ch > 0x7F || ch == '\r' || ch == '\n' || ch == ' ') { continue; } else if (ch == BASE64_PAD) { if (quad_pos < 2 || (quad_pos == 2 && binascii_find_valid(textBuf, i, 1) != BASE64_PAD)) { continue; } else { // A pad sequence means no more input. We've already interpreted the data // from the quad at this point. bitCount = 0; break; } } else { int sixBits = table_a2b_base64[ch]; if (sixBits == -1) { continue; } // Shift it in on the low end, and see if there's a byte ready for output. quad_pos = (quad_pos + 1) & 0x03; bits = (bits << 6) | sixBits; bitCount += 6; if (bitCount >= 8) { bitCount -= 8; dataBuf.append((char) ((bits >> bitCount) & 0xff)); // byte // Erase the bits we emitted bits &= (1 << bitCount) - 1; } } } // Check that no bits are left if (bitCount != 0) { throw new PyException(Error, "Incorrect padding"); } return new PyString(dataBuf.toString()); } catch (ClassCastException e) { throw argMustBeBytes("a2b_base64", text); } } public static PyString __doc__b2a_base64 = new PyString("(bin) -> ascii. Base64-code line of data"); /** * Convert binary data to a line of ASCII characters in base64 coding. The return value is the * converted line, including a newline char. */ public static PyString b2a_base64(PyObject data) { try (PyBuffer dataBuf = getByteBuffer(data)) { int dataLen = dataBuf.getLen(); if (dataLen > BASE64_MAXBIN) { throw new PyException(Error, "Too much data for base64 line"); } // Every 3 bytes (rounded up) maps to 4 characters (and there's a newline) StringBuilder ascii_data = new StringBuilder(4 * ((dataLen + 2) / 3) + 1); int bits = 0; // store bits not yet emitted (max 14 bits) int bitCount = 0; // how many (valid) bits waiting for (int i = 0; i < dataLen; i++) { // Shift the data into our buffer bits = (bits << 8) | dataBuf.intAt(i); bitCount += 8; // While there are 6-bit groups available, emit them as characters. while (bitCount >= 6) { bitCount -= 6; ascii_data.append(table_b2a_base64[(bits >> bitCount) & 0x3f]); } } // Emit the balance of bits and append a newline if (bitCount == 2) { ascii_data.append(table_b2a_base64[(bits & 3) << 4]); ascii_data.append(BASE64_PAD); ascii_data.append(BASE64_PAD); } else if (bitCount == 4) { ascii_data.append(table_b2a_base64[(bits & 0xf) << 2]); ascii_data.append(BASE64_PAD); } ascii_data.append('\n'); // Append a courtesy newline return new PyString(ascii_data.toString()); } catch (ClassCastException e) { throw argMustBeBytes("b2a_base64", data); } } public static PyString __doc__a2b_hqx = new PyString("ascii -> bin, done. Decode .hqx coding"); /** * Convert binhex4 formatted ASCII data to binary, without doing RLE-decompression. The string * should contain a complete number of binary bytes, or (in case of the last portion of the * binhex4 data) have the remaining bits zero. */ public static PyTuple a2b_hqx(PyObject text) { try (PyBuffer textBuf = getByteBuffer(text)) { int textLen = textBuf.getLen(); StringBuilder dataBuf = new StringBuilder(); int bitCount = 0; int bits = 0; boolean done = false; for (int i = 0; i < textLen; i++) { // Get the byte and look it up byte b = table_a2b_hqx[textBuf.intAt(i)]; if (b == SKIP) { continue; } else if (b == FAIL) { throw new PyException(Error, "Illegal char"); } else if (b == DONE) { // The terminating colon done = true; break; } else { // Shift it into the buffer and see if any bytes are ready bits = (bits << 6) | b; bitCount += 6; if (bitCount >= 8) { bitCount -= 8; dataBuf.append((char) ((bits >> bitCount) & 0xff)); // byte bits &= (1 << bitCount) - 1; } } } if (bitCount != 0 && !done) { throw new PyException(Incomplete, "String has incomplete number of bytes"); } return new PyTuple(new PyString(dataBuf.toString()), Py.newInteger(done ? 1 : 0)); } catch (ClassCastException e) { throw argMustBeBytes("a2b_hqx", text); } } public static PyString __doc__rlecode_hqx = new PyString("Binhex RLE-code binary data"); /** Perform binhex4 style RLE-compression on data and return the result. */ static public PyString rlecode_hqx(PyObject data) { try (PyBuffer inBuf = getByteBuffer(data)) { int len = inBuf.getLen(); StringBuilder outBuf = new StringBuilder(); for (int in = 0; in < len; in++) { char ch = (char) inBuf.intAt(in); if (ch == RUNCHAR) { // RUNCHAR. Escape it. outBuf.append(RUNCHAR); outBuf.append((char) 0); } else { // Check how many following are the same int inend; for (inend = in + 1; inend < len && ((char) inBuf.intAt(inend)) == ch && inend < in + 255; inend++) { /* nothing */ } if (inend - in > 3) { // More than 3 in a row. Output RLE. outBuf.append(ch); outBuf.append(RUNCHAR); outBuf.append((char) (inend - in)); in = inend - 1; } else { // Less than 3. Output the byte itself outBuf.append(ch); } } } return new PyString(outBuf.toString()); } catch (ClassCastException e) { throw argMustBeBytes("rlecode_hqx", data); } } public static PyString __doc__b2a_hqx = new PyString("Encode .hqx data"); /** * Perform hexbin4 binary-to-ASCII translation and return the resulting string. The argument * should already be RLE-coded, and have a length divisible by 3 (except possibly the last * fragment). */ public static PyString b2a_hqx(PyObject data) { try (PyBuffer dataBuf = getByteBuffer(data)) { int len = dataBuf.getLen(); StringBuilder textBuf = new StringBuilder(); int bits = 0; int bitCount = 0; for (int i = 0; len > 0; len--, i++) { // Shift into our buffer, and output any 6bits ready bits = (bits << 8) | (char) dataBuf.intAt(i); bitCount += 8; while (bitCount >= 6) { bitCount -= 6; textBuf.append(table_b2a_hqx[(bits >> bitCount) & 0x3f]); } } // Output a possible runt byte if (bitCount != 0) { bits <<= (6 - bitCount); textBuf.append(table_b2a_hqx[bits & 0x3f]); } return new PyString(textBuf.toString()); } catch (ClassCastException e) { throw argMustBeBytes("b2a_hqx", data); } } public static PyString __doc__rledecode_hqx = new PyString("Decode hexbin RLE-coded string"); /** * Perform RLE-decompression on the data, as per the binhex4 standard. The algorithm uses * 0x90 after a byte as a repeat indicator, followed by a count. A count of 0 * specifies a byte value of 0x90. The routine returns the decompressed data, unless * data input data ends in an orphaned repeat indicator, in which case the Incomplete * exception is raised. */ static public PyString rledecode_hqx(PyObject data) { try (PyBuffer inBuf = getByteBuffer(data)) { int inLen = inBuf.getLen(); int index = 0; // Empty string is a special case if (inLen == 0) { return Py.EmptyString; } // Pretty much throughout, we use a char to store a byte :( StringBuilder outBuf = new StringBuilder(); // Handle first byte separately (since we have to get angry // in case of an orphaned RLE code). if (--inLen < 0) { throw new PyException(Incomplete); } char outByte = (char) inBuf.intAt(index++); if (outByte == RUNCHAR) { if (--inLen < 0) { throw new PyException(Incomplete); } int in_repeat = inBuf.intAt(index++); if (in_repeat != 0) { // Note Error, not Incomplete (which is at the end // of the string only). This is a programmer error. throw new PyException(Error, "Orphaned RLE code at start"); } outBuf.append(RUNCHAR); } else { outBuf.append(outByte); } while (inLen > 0) { if (--inLen < 0) { throw new PyException(Incomplete); } outByte = (char) inBuf.intAt(index++); if (outByte == RUNCHAR) { if (--inLen < 0) { throw new PyException(Incomplete); } int in_repeat = inBuf.intAt(index++); if (in_repeat == 0) { // Just an escaped RUNCHAR value outBuf.append(RUNCHAR); } else { // Pick up value and output a sequence of it outByte = outBuf.charAt(outBuf.length() - 1); while (--in_repeat > 0) { outBuf.append(outByte); } } } else { // Normal byte outBuf.append(outByte); } } return new PyString(outBuf.toString()); } catch (ClassCastException e) { throw argMustBeBytes("rledecode_hqx", data); } } public static PyString __doc__crc_hqx = new PyString("(data, oldcrc) -> newcrc. Compute hqx CRC incrementally"); /** * Compute the binhex4 crc value of data, starting with an initial crc and * returning the result. */ public static int crc_hqx(PyObject data, int crc) { try (PyBuffer buf = getByteBuffer(data)) { int len = buf.getLen(); for (int i = 0; i < len; i++) { crc = ((crc << 8) & 0xff00) ^ crctab_hqx[((crc >> 8) & 0xff) ^ buf.intAt(i)]; } return crc; } catch (ClassCastException e) { throw argMustBeBytes("crc_hqx", data); } } //@formatter:off static int[] crc_32_tab = new int[] { 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d }; //@formatter:on public static int crc32(PyObject bp) { return crc32(bp, 0); } public static int crc32(PyObject data, long long_crc) { int crc = ~(int) long_crc; try (PyBuffer dataBuf = getByteBuffer(data)) { int len = dataBuf.getLen(); for (int i = 0; i < len; i++) { int b = dataBuf.intAt(i); crc = crc_32_tab[(crc ^ b) & 0xff] ^ (crc >>> 8); /* Note: (crc >> 8) MUST zero fill on left */ } return ~crc; } catch (ClassCastException e) { throw argMustBeBytes("crc32", data); } } private static char[] hexdigit = "0123456789abcdef".toCharArray(); public static PyString __doc__b2a_hex = new PyString("b2a_hex(data) -> s; Hexadecimal representation of binary data.\n" + "\n" + "This function is also available as \"hexlify()\"."); public static PyString b2a_hex(PyObject data) { try (PyBuffer dataBuf = getByteBuffer(data)) { int dataLen = dataBuf.getLen(); StringBuilder retbuf = new StringBuilder(dataLen * 2); // make hex version of string, taken from shamodule.c for (int i = 0; i < dataLen; i++) { int ch = dataBuf.intAt(i); retbuf.append(hexdigit[(ch >>> 4) & 0xF]); retbuf.append(hexdigit[ch & 0xF]); } return new PyString(retbuf.toString()); } catch (ClassCastException e) { throw argMustBeBytes("b2a_hex", data); } } public static PyString hexlify(PyObject argbuf) { return b2a_hex(argbuf); } public static PyString a2b_hex$doc = new PyString("a2b_hex(hexstr) -> s; Binary data of hexadecimal representation.\n" + "\n" + "hexstr must contain an even number of hex digits " + "(upper or lower case).\n" + "This function is also available as \"unhexlify()\""); public static PyString a2b_hex(PyObject hexstr) { try (PyBuffer buf = getByteBuffer(hexstr)) { int bufLen = buf.getLen(); StringBuilder retbuf = new StringBuilder(bufLen / 2); /* * XXX What should we do about strings with an odd length? Should we add an implicit * leading zero, or a trailing zero? For now, raise an exception. */ if (bufLen % 2 != 0) { throw Py.TypeError("Odd-length string"); } for (int i = 0; i < bufLen; i += 2) { int top = Character.digit(buf.intAt(i), 16); int bot = Character.digit(buf.intAt(i + 1), 16); if (top == -1 || bot == -1) { throw Py.TypeError("Non-hexadecimal digit found"); } retbuf.append((char) ((top << 4) + bot)); } return new PyString(retbuf.toString()); } catch (ClassCastException e) { throw argMustBeBytes("a2b_hex", hexstr); } } public static PyString unhexlify(PyObject argbuf) { return a2b_hex(argbuf); } final private static char[] upper_hexdigit = "0123456789ABCDEF".toCharArray(); private static StringBuilder qpEscape(StringBuilder sb, char c) { sb.append('='); sb.append(upper_hexdigit[(c >>> 4) & 0xF]); sb.append(upper_hexdigit[c & 0xF]); return sb; } final public static PyString __doc__a2b_qp = new PyString("Decode a string of qp-encoded data"); private static boolean getIntFlagAsBool(ArgParser ap, int index, int dflt, String errMsg) { try { boolean val = ap.getInt(index, dflt) != 0; return val; } catch (PyException e) { if (e.match(Py.AttributeError) || e.match(Py.ValueError)) { throw Py.TypeError(errMsg); } throw e; } } public static PyString a2b_qp(PyObject[] arg, String[] kws) { ArgParser ap = new ArgParser("a2b_qp", arg, kws, new String[] {"s", "header"}); PyObject bp = ap.getPyObject(0); StringBuilder sb = new StringBuilder(); boolean header = getIntFlagAsBool(ap, 1, 0, "an integer is required"); try (PyBuffer ascii_data = getByteBuffer((PyObject) bp)) { for (int i = 0, m = ascii_data.getLen(); i < m;) { char c = (char) ascii_data.intAt(i++); if (header && c == '_') { sb.append(' '); } else if (c == '=') { if (i < m) { c = (char) ascii_data.intAt(i++); if (c == '=') { sb.append(c); } else if (c == ' ') { sb.append("= "); } else if ((c >= '0' && c <= '9' || c >= 'A' && c <= 'F') && i < m) { char nc = (char) ascii_data.intAt(i++); if ((nc >= '0' && nc <= '9' || nc >= 'A' && nc <= 'F')) { sb.append((char) (Character.digit(c, 16) << 4 | Character.digit(nc, 16))); } else { sb.append('=').append(c).append(nc); } } else if (c != '\n') { sb.append('=').append(c); } } } else { sb.append(c); } } return new PyString(sb.toString()); } catch (ClassCastException e) { throw argMustBeBytes("a2b_qp", bp); } } final public static PyString __doc__b2a_qp = new PyString("b2a_qp(data, quotetabs=0, istext=1, header=0) -> s;\n" + "Encode a string using quoted-printable encoding.\n\n" + "On encoding, when istext is set, newlines are not encoded, and white\n" + "space at end of lines is. When istext is not set, \r and \n (CR/LF) are\n" + "both encoded. When quotetabs is set, space and tabs are encoded."); public static PyString b2a_qp(PyObject[] arg, String[] kws) { ArgParser ap = new ArgParser("b2a_qp", arg, kws, new String[] {"s", "quotetabs", "istext", "header"}); boolean quotetabs = getIntFlagAsBool(ap, 1, 0, "an integer is required"); boolean istext = getIntFlagAsBool(ap, 2, 1, "an integer is required"); boolean header = getIntFlagAsBool(ap, 3, 0, "an integer is required"); PyObject data = ap.getPyObject(0); try (PyBuffer dataBuf = getByteBuffer(data)) { int dataLen = dataBuf.getLen(); StringBuilder sb = new StringBuilder(dataLen); String lineEnd = "\n"; // Work out if line endings should be crlf. for (int i = 0, m = dataBuf.getLen(); i < m; i++) { if ('\n' == dataBuf.intAt(i)) { if (i > 0 && '\r' == dataBuf.intAt(i - 1)) { lineEnd = "\r\n"; } break; } } int count = 0; int MAXLINESIZE = 76; int in = 0; while (in < dataLen) { char ch = (char) dataBuf.intAt(in); if ((ch > 126) || (ch == '=') || (header && ch == '_') || ((ch == '.') && (count == 0) && ((in + 1 == dataLen) || (char) dataBuf.intAt(in + 1) == '\n' || (char) dataBuf.intAt(in + 1) == '\r')) || (!istext && ((ch == '\r') || (ch == '\n'))) || ((ch == '\t' || ch == ' ') && (in + 1 == dataLen)) || ((ch < 33) && (ch != '\r') && (ch != '\n') && (quotetabs || (!quotetabs && ((ch != '\t') && (ch != ' ')))))) { if ((count + 3) >= MAXLINESIZE) { sb.append('='); sb.append(lineEnd); count = 0; } qpEscape(sb, ch); in++; count += 3; } else { if (istext && ((ch == '\n') || ((in + 1 < dataLen) && (ch == '\r') && (dataBuf.intAt(in + 1) == '\n')))) { count = 0; // Protect against whitespace on end of line int out = sb.length(); if (out > 0 && ((sb.charAt(out - 1) == ' ') || (sb.charAt(out - 1) == '\t'))) { ch = sb.charAt(out - 1); sb.setLength(out - 1); qpEscape(sb, ch); } sb.append(lineEnd); if (ch == '\r') { in += 2; } else { in++; } } else { if ((in + 1 != dataLen) && ((char) dataBuf.intAt(in + 1) != '\n') && (count + 1) >= MAXLINESIZE) { sb.append('='); sb.append(lineEnd); count = 0; } count++; if (header && ch == ' ') { sb.append('_'); in++; } else { sb.append(ch); in++; } } } } return new PyString(sb.toString()); } catch (ClassCastException e) { throw argMustBeBytes("b2a_qp", data); } } /** * We use this when the argument given to a conversion method is to be interpreted as text. If * it is byte-like, the bytes are used unchanged, assumed in the "intended" character set. It * may be a {@code PyUnicode}, in which case the it will be decoded to bytes using the default * encoding ({@code sys.getdefaultencoding()}. * * @param text an object with the buffer protocol (or {@code unicode}) * @return a byte-buffer view of argument (or default decoding if {@code unicode}) * @throws ClassCastException where the text object does not implement the buffer protocol */ private static PyBuffer getByteBuffer(PyObject text) throws ClassCastException { if (text instanceof PyUnicode) { String s = ((PyUnicode) text).encode(); return new SimpleStringBuffer(PyBUF.SIMPLE, null, s); } else { return ((BufferProtocol) text).getBuffer(PyBUF.SIMPLE); } } /** * Convenience method providing the exception when an argument is not the expected type, in the * format "f() argument 1 must bytes or unicode, not type(arg)." * * @param f name of function of error (or could be any text) * @param arg argument provided from which actual type will be reported * @return TypeError to throw */ private static PyException argMustBeBytes(String f, PyObject arg) { String fmt = "%s() argument 1 must bytes or unicode, not %s"; String type = "null"; if (arg instanceof PyObject) { type = ((PyObject) arg).getType().fastGetName(); } else if (arg != null) { type = arg.getClass().getName(); } return Py.TypeError(String.format(fmt, f, type)); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy